

Journal of Obesity and Diabetes

Review Article

OPEN ACCESS

ISSN: 2638-812X

https://doi.org/10.33805/2638-812X.115

Both Fasting Blood Glucose (FBG) and A1c Drop in Less than One Month after Starting Lysulin Supplementation John F Burd^{*}

Affiliation: Lysulin, Inc., San Diego, California, USA

***Corresponding author:** John F Burd, Lysulin, Inc., 3525A Del Mar Heights Road, Suite 398, San Diego, California, USA, Tel: 619-992-2873, E-mail: <u>jburd@jburd.com</u>

Citation: Burd JF. Both fasting blood glucose (FBG) and A1C drop in less than one month after starting lysulin supplementation (2019) J Obesity and Diabetes 3: 33-35.

Received: Oct 11, 2019 **Accepted:** Oct 23, 2019

Published: Oct 29, 2019

Copyright: © 2019 Burd JF. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

When a diabetes treatment is changed, patients are eager to see their FBG and A1c changes as a result on the new treatment. We examined these changes in 20 subjects with Type 2 diabetes for 1 week prior to starting Lysulin and then for the following 30 days. While both FBG and A1c drop in less than 1 month, the change in A1c was more rapid than the change if FBG. Possible reasons for the differences between FBG and A1c are presented.

Keywords: Lysulin, Type 2 diabetes, Glucose.

Glucose is essential in providing the human body its' energy needs. Glucose relies upon the hormone, insulin, to enter our cells thereby producing the energy we need for everyday living. However, while everyone needs a certain amount of glucose for daily energy production, excessive glucose is dangerously toxic to the body (primarily as a result of protein glycation). This leads to insulin resistance, caused by the glycation of insulin and insulin receptors, thereby resulting in high concentrations of glucose in the bloodstream [1]. The therapy for type 2 diabetes starts with attempts to control glucose through diet and exercise. If this fails, oral drugs are prescribed.

If oral drugs do not work, insulin injections are used. Over 30% of people with type 2 diabetes are using insulin injections to control their blood glucose levels [2]. There is a vast literature documenting the role of nutraceuticals in the management of alterations in metabolism [3].

A new nutritional supplement, Lysulin, was recently introduced and is the only product that targets the cause on insulin resistance and diabetes. When a treatment change is made, patients are interested in how quickly they can observe a change in their FBG and A1c. This information is only available for insulin injections, where the change in FBG can be seen in one day. We examined the change in FBG and A1c in 20 subjects with Type 2 diabetes for 1 week prior to starting 3 daily servings of Lysulin and then continued testing for the following 30 days. The results for all subjects are presented in **Table 1**.

As shown in the Table 1, 70% of participants saw a benefit (14 out of 20), 20% saw no change (4 folks) and 10% may have had an increase, although slight. The average change in FBG is shown in **Figure 1**.

As seen in Figure 1, the average FBG started dropping after 14 day and had started to level off after 27 days. As shown in the Table 1,

65% of participants saw a benefit using Lysulin (13 out of 20), 25% (5 subjects) saw no change and 10% (2 subjects) may have had an increase of greater than 4 mg/dL glucose. The change in Average A1c is shown in **Figure 2**.

Citation: Burd JF. Both fasting blood glucose (FBG) and A1c drop in less than one month after starting lysulin supplementation (2019) J Obesity and Diabetes 3: 33-35.

		31	FBS	91	95	151	138	110	128	55	88	160	141	94	118	125	160	165	NA	162	161	NA	195	132.06
	st-tysulin	Day	HbA1c	7	7.5	8.7	8.4	7.1	7.7	6.9	6.6	7.9	6.7	6.6	6.8	7.7	8	8.1	AN	7.9	8.1	NA	9.2	7.605556
		Day 29	FBS	06	NA	152	135	NA	120	98	91	158	NA	06	110	120	160	160	AA	160	160	NA	190	132.93
		Day 27	FBS	92	100	150	NA	92	128	100	90	160	NA	95	118	125	168	170	NA	165	172	NA	191	132.25
		Day 25	FBS	98	96	154	132	06	122	103	95	168	148	86	115	138	160	160	NA	170	165	180	180	135.37
		Day 23	FBS	93	102	NA	130	93	130	107	92	166	145	105	110	140	155	155	NA	165	160	185	180	134.06
		Day 21	FBS	90	100	150	130	NA	125	111	90	172	150	108	NA	129	150	150	NA	165	168	180	184	138.35
		ay 19	FBS	100	106	160	145	98	135	109	105	170	160	NA	109	138	145	152	NA	171	172	195	185	41.94
		Day 17 D	FBS	95	105	155	138	100	130	110	100	165	NA	100	108	140	150	160	158	172	175	190	190	139.00
		5 [FBS	06	110	151	140	101	132	113	95	160	158	102	104	131	158	169	160	180	185	200	195	141.70
	Po	Day 1	HbA1c	7	7.9	8.9	8.2	6.9	8.1	7.1	6.5	7.8	7.2	6.5	6.6	8.1	7.7	8	7.2	8.5	8.9	9.4	9.1	7.78
		Day 13	FBS	92	110	NA	148	102	142	100	NA	150	150	06	NA	135	148	158	162	175	185	NA	195	140.13
		Day 11	FBS	108	96	174	142	100	132	103	105	163	158	NA	120	148	170	170	160	180	NA	170	190	143.83
		Day 9	FBS	93	100	144	150	103	130	127	92	156	155	95	119	150	165	NA	172	185	168	195	185	141.26
		Day 7	FBS	90	NA	150	130	95	135	124	NA	172	160	118	100	128	160	169	170	195	172	NA	180	144.00
		Day 5	FBS	95	106	170	155	95	135	114	90	NA	158	110	109	148	158	160	175	191	175	185	184	142.79
		Day 3	FBS	110	NA	165	140	NA	140	110	95	160	155	102	104	131	NA	150	160	180	NA	200	195	143.56
			FBS	06	113	153	145	100	142	103	100	165	160	100	118	140	150	152	168	172	170	190	190	141.05
		Day 7 Day	HbA1c	7.2	7.9	9.1	8.4	7	8.3	7.5	6.6	7.9	7.5	7.1	7.1	8.1	8.7	8	8.2	9	6	9.4	10	8.1
			FBS	66	106	164	135	105	145	114	105	NA	165	105	108	141	168	160	170	182	182	180	170	142.32
	re-Lysulin	Day 5	FBS	100	125	NA	120	94	140	91	NA	155	170	110	118	137	183	152	165	192	NA	170	190	141.88
		Day 3	FBS	111	NA	155	129	100	139	100	95	160	168	06	110	NA	170	155	173	180	171	182	176	142.44
	PI	T T	FBS	109	116	170	131	104	140	110	06	170	150	100	108	139	173	145	176	190	181	173	186	143.05
		Day	HbA1c	7.3	7.9	6	8.5	6.6	8.2	7.5	6.6	7.9	7.4	6.9	7.1	7.9	8.7	7.6	8.2	9.2	8.5	9.4	9.8	8.01
		Volunteer		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Average

As seen in Figure 2, the A1c was lower at 15 days and continued to decrease at the day 31 test. The reduction in A1c is statistically significant, with p=0.0004 at day 15, p=0.0002 at day 31. As shown in the above table, 70% of participants saw a benefit using Lysulin (14 out of 20), and 20% saw no change, 4 subjects had no change (+ 0.2 %) and 10% may have had an increase, although slight. This is consistent with A1c drops seen in earlier Lysulin studies [4-6]. Interestingly, subject 20 had an A1c decrease of 9.8% to 9.2% but their FBG increased from 180 mg/dL to 187 mg/dL.

Of more importance is the observation that 70% of participants saw an improvement in their A1c. There are several possible explanations why 100% did not see an improvement in their A1c. The most obvious would be a lack of compliance in taking the recommended 3 servings a day of Lysulin or a change in diet, exercise or lifestyle which could also effect glucose levels. Another possibility is that a certain percentage of the population does not effectively move the 3 primary ingredients in Lysulin from their gut into the bloodstream, due to microbiome population in the gut or other reasons that are ruled by genetics [7].

Another important finding was that A1c dropped more quickly than did the FBG. This implies that the daily average glucose dropped faster than the FBG. This finding has been reported by others-see <u>http://www.ngsp.org/A1ceAG.asp</u> which concluded that post-lunch and bedtime glucose showed relationships to HbA1c that were the most similar to 7 point glucose daily testing. Fasting glucose correlated less well and results showed that with increasing HbA1c, fasting glucose progressively underestimated the HbA1c level.

Summary and Conclusion

This study compared the change in FBG and A1c following a change in treatment. The results are that FBG changes can be observed in 2 to 3 weeks and changes in A1c can be observed in as little as 2 weeks. This substantiates both the use of Lysulin for type 2 diabetes and the use of A1c to measure the effectiveness of changes in diabetes therapy [8].

References

- Rhinesmith T, Turkete T, and Root-Bernstein R. Rapid nonenzymatic glycation of the insulin receptor under hyperglycemic conditions inhibits insulin binding in vitro: implications for insulin resistance (2017) Int J Mol Sci. 18: 2602-2612. https://10.3390/ijms18122602
- 2. https://www.cdc.gov/diabetes/data/statistics/statistics- report.html
- Scicchitano P, Cameli M, Maria Maiello M, Modesti PA, uiesan ML, et.al. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics (2014) J Functional Foods 6: 11-32. <u>https://doi.org/10.1016/j.jff.2013.12.006</u>
- Burd J. Lysulin[™], A new supplement for nutritional support for people with diabetes and pre-diabetes (those at risk of developing diabetes) (2018) Diabetes Management 8: 38-40.
- Burd JF, Noetzel V, Gonzalez A and Melero FAA. Lysulin®: A double-blind placebo controlled pilot study of daily oral supplementation in people with type 2 diabetes (2018) Diabetes Management 8: 154-162.
- Burd JF, Alvarez Malero FA, and Nortzel V. Hemoglobin A1c (HbA1c) shows improvement in glycemic control in as little as two weeks following the addition of Lysulin to the treatment of diabetes (2018) Diabetes Management 8: 82-84.

 Table 1: Change in FBG and A1c before and after Lysulin – 3 servings a day.

Citation: Burd JF. Both fasting blood glucose (FBG) and A1c drop in less than one month after starting lysulin supplementation (2019) J Obesity and Diabetes 3: 33-35.

- <u>.</u>
- Jafarnejad A, Bathaie SZ, Nakhjavani M, Hassan MZ and Banasadegh S. The improvement effect of L-Lys as a chemical chaperone on STZ-induced diabetic rats, protein structure and function (2018) Diabetes/Metabolism Research and Reviews 24: 64-73. <u>https://doi.org/10.1002/dmrr.769</u>
- Klonoff DC, Bergenstal RM, Cole TG, Bohannon NJV, Ammirati EB, et.al. Clinical evaluation of a rapid A1C test (A1cNow) for home use (2016) Point Care 5: 116-120. https://doi.org/10.1097/01.poc.0000232578.91019.03

