

# Pharmacovigilance and

Pharmacoepidemiology

EDELWEISS PUBLICATIONS

### Letter to Editor

ISSN: 2638-8235

# Gull Alpha Power of the Chen Type

# Clement Boateng Ampadu<sup>\*</sup>

Affiliation: 31 Carrolton Road, Boston, MA 02132-6303, USA

\***Corresponding author:** Clement Boateng Ampadu, Department of Biostatistics, USA, Tel: +1-6174697268, E-mail: drampadu@hotmail.com

Citation: Ampadu BC. Gull alpha power of the chen type (2020) Pharmacovigil and Pharmacoepi 3: 16-17.

Received: Oct 28, 2020

Accepted: Dec 05, 2020

Published: Dec 11, 2020

**Copyright:** © 2020 Ampadu BC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

#### Abstract

In they introduced the Chen distribution, and in they extended the distribution to include its "normalized version". In this paper, we introduce a variant of the Gull Alpha Power distribution by modifying Chen-G of and show the new family is good in fitting real life data.

Keywords: Chen distribution, Chen-G distribution, Gull alpha power distribution.

#### Introduction to the New Family

In 2000, the following distribution was introduced in [1] as the Chen distribution,  $\mathbf{F}(\mathbf{t}) = \mathbf{1} - \mathbf{e}^{\lambda(1-e^{t\beta})}$ , where  $\lambda,\beta,t>0$ . The two parameter Chen distribution has the ability to model bathtub shaped failure rate functions; it however lacks a scale parameter. The normalized version was introduced in [2] with the following CDF,

$$F(x) = \int_{0}^{G(x)} f(t)dt = A[1 - e^{\lambda}(1 - e^{G(x)B})]$$

Where  $\lambda,\beta > 0$ ,  $x^{2R}$  and  $A = \frac{1}{1 - e^{\lambda(1-e)}}$  is a normalizing

constant. Based on the structure of the Gull Alpha Power CDF [3]  $\frac{\alpha^{F}(y)}{\alpha^{F(y)}}$  for  $\alpha > 1$ , we modify Chen-G [2] to introduce the

following.

#### Definition

A random variable J will be called Gull Alpha Power distributed with respect to Chen if its CDF is given by

F(x; a, b, 
$$\xi$$
) =  $\frac{\left(e^{(1-e)^{a}}+1\right)G(x;\xi)}{e^{a\left(1-e^{G(x;\xi)b}\right)+1}}$ 

Where a,b>0, G is some baseline distribution with parameter vector  $\xi$ , and  $\chi \in \mathbb{R}$ . The new distribution is a good fit to real life data as shown in the next section.

## **Practical Illustration**

We assume the baseline distribution is Normal with the following CDF  $G(x;\xi) = \frac{1}{2} \operatorname{erfc} \frac{c-x}{\sqrt{2d}}$  where erfc is the

complementary error function. Thus, from the above definition, we have the following.

#### Proposition

The CDF of the Gull Alpha Power Normal distribution of the Chen Type is given by

$$\mathbf{F}(\mathbf{x}; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) = \frac{\left(e^{(1-e)a} + 1\right)erfc\left(\frac{c-x}{\sqrt{2b}}\right)}{2\left(e^{a\left((1-e)^{2-b}erfc\left(\frac{c-x}{\sqrt{2}}\right)^{b}\right)} + 1\right)}$$

Obviously, the PDF can be obtained by differentiating the CDF above.

#### Notation

We write  $J \sim GAPANC(c,d,a,b)$  if J is a Gull Alpha Power Normal random variable of the Chen type

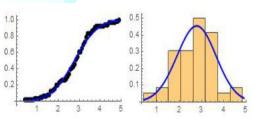



Figure 1: The CDF and PDF of GAPANC (2.71318, 0.884185, 0.160665, 0.457947) fitted to the empirical distribution and histogram of the lifetime of 50 devices data [4].

#### **Open Problem**

It is an open problem to obtain properties and applications of this new class of statistical distributions. The author invites readers to tackle this open problem.



# References

- Chen Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function (2000) Statistics and Probability Letters 49: 155-161. <u>https://doi.org/10.1016/S0167-7152(00)00044-4</u>
  Anzagra L, Sarpong S and Nasiru S. Chen-G class of
- Anzagra L, Sarpong S and Nasiru S. Chen-G class of distributions (2020) Cogent Mathematics and Statistics 7. https://doi.org/10.1080/25742558.2020.1721401
- Ijaz M, Asim SM, Alamgir, Farooq M, Khan SA, et al. A gull alpha power weibull distribution with applications to real and simulated data (2020) PLoS ONE 15. https://doi.org/10.1371/journal.pone.0233080
- 4. Aarset MV. How to identify bathtub hazard rate (1987) IEEE Transactions on Reliability 36: 106-108.

