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Abstract 
The geometry of the neighborhood of the compound of two nucleic acid helices with nitrogen bases was investigated. It is proved that this 

neighborhood is a cross-polytope of dimension 13 (polytope of hereditary information), in the coordinate planes of which there are 

complementary hydrogen bonds of nitrogenous bases. The structure of this polytope is defined, its image is given. The total incident flows from 

the low-dimensional elements to the higher-dimensional elements and vice versa of the hereditary information polytope are calculated equal to 

each other. High values of these flows indicate a high intensity of information exchange in the polytope of hereditary information that ensures the 

transfer of this information. 
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Introduction 
 

In 1953, James Watson and Francis Crick based on the analysis of 

diffractograms proposed a three-dimensional model of a DNA 

molecule consisting of two chains twisted into a spiral. At the same 

time, sugar molecules and phosphoric acid residues included in the 

DNA molecule were also considered three-dimensional. However, it 

was not indicated which three-dimensional figures correspond to 

sugar molecules and phosphoric acid residues. According to this 

model, flat nitrogenous bases, being in different chains, using two 

complementary hydrogen bonds connected two spirals into a single 

whole. But how exactly the flat nitrogenous bases are located in 

space remained unknown. And this is despite the fact that it is these 

relations that determine the most important issue of the transmission 

of hereditary information. Recently, it was proved that sugar 

molecules and phosphoric acid residues have the highest dimension. 

The phosphoric acid residue has a dimension of 4, and the sugar 

molecule has a dimension of 12. In this regard, the geometry of 

nucleic acids was considered taking into account the highest 

dimension of the components [1-6]. 

 

In addition, for the convenience of images, a simplified three-

dimensional model of a sugar molecule was built on the basis of a 

full twelve-dimensional model of a sugar molecule. This model can 

be used in further constructions, not forgetting the dimension of its 

complete model. This model was used to construct images of single 

nucleic acid helices. When passing to the analysis of nucleic acids 

consisting of two linked helices, it is necessary to take into account 

the emerging anti-parallelism of geometric elements in linked 

spirals. In this article, continuing the research begun in the works, it 

will be shown that sugar molecules located in linked nucleic acid 

helices form a polytope of dimension 13 of the type of cross-

polytope in which there are exactly 12 coordinate planes. In these 

coordinate planes outlined by rectangles with antiparallel edges, 

exactly 12 compounds of nitrogen bases currently known can be  

 

 

 

 

located. The image of the polytope and its coordinate planes is 

obtained, its structure is determined. This polytope can be called the 

polytope of hereditary information, since it transmits hereditary 

information from one spiral to another using a sequential alternation 

of nitrogenous bases. It has been shown that the polytopic of 

hereditary information is characterized by a powerful stream of 

incidents between geometric elements of different dimensions, 

providing an extremely intense exchange of information between the 

components of nucleic acids. The evidence of the existence of such 

an exchange of information can be found in the recently discovered 

inheritance of changes not related to the modification of sequences 

in DNA, i.e. with methylation-the binding of a methyl group CH3 
to 

the nitrogenous base of DNA [7,10-12]. 

 

Spatial modes of sugar molecule and nucleic acid 

helices 
From a sugar molecule with five carbon atoms in the Fischer form, 

we can move on to representing the molecule as a closed chain. 

Having chosen, for example, Form B from the two enantimorphic 

forms A and B, the closed chain of the sugar molecule has the form 

in Figure 1 [2,5-7,13]. 

 

To obtain a spatial figure of a sugar molecule (B-ribose), 

considering the atoms and functional groups shown in the projection 

onto the plane in Figure 1 as the vertices of the corresponding 

spatial figure, it is necessary to introduce additional edges in 

addition to the edges shown in Figure 1. These edges will have only 

spatial significance, unlike the edges in Figure 1, which also depict 

chemical covalent bonds. To distinguish between edges, we will 

depict edges corresponding to chemical covalent bonds with thick 

solid black lines. Edges that have only spatial significance in the 

images of the figures will be indicated by thin dashed black lines 

[7]. 
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Figure 1: Closed chain sugar molecule (form B). 

 

Since the number of atoms and functional groups is 13, the closest 

convex closed figure that can be obtained from Figure 1 is a simplex 

of dimension 12. The dimension of the simplex is n-1, where n is the 

number of vertices. Moreover, each vertex is connected to all other 

vertices by edges, i.e. 12 edges emanate from each vertex. A spatial 

image of the B-ribose molecule is given in the article. If, as a 

simplification, we leave, in addition to the edges corresponding to 

chemical bonds, only the edges of the external contour in the 

projection of the spatial figure onto the plane, we get an image of 

the B-ribose molecule, as shown in Figure 2 [2]. 

 

 
Figure 2: Schematic representation of a sugar molecule on a plane. 

 

Since the lengths of the carbon-carbon and carbon-oxygen chemical 

bonds are close, we can approximately consider them equal to 

a=0.15 nm. In addition, it can be assumed that the edges of chemical 

bonds emanating from four carbon atoms in the carbon cycle are 

located symmetrically with respect to the plane of the carbon cycle. 

Then, as mathematically proved, chemical bonds emanating from 

four carbon atoms of the carbon cycle are perpendicular to the plane 

of the cycle. This leads to a simplified spatial image of the B-ribose 

molecule in Figure 3.  

 

 
Figure 3: A simplified spatial image of a B-ribose molecule. 

 

In Figure 3, of the additional edges needed to construct a convex 

closed spatial figure and to fulfill the Euler-Poincare equation, only 

the edges are left to give the figure a closed form. In this image, the 

B-ribose molecule is three-dimensional. But we must remember that 

the number of edges for fulfilling the Euler-Poincare equation 

should be much larger-12 edges from each vertex. The remainder of 

phosphoric acid H3PO4
 
is geometrically a tetrahedron with a center. 

Its dimension is 4. Having taken such images, the nucleic acid chain 

is as shown in Figure 4 [7,14].  

 

In Figure 4, in the sugar molecules, the functional group CH2OH is 

replaced by some nitrogenous bases as a result of the isolation of 

water molecules. 

 

Polytopes with antiparallel edges 
In single-stranded and double-stranded nucleic acids (RNA, DNA), 

the constituents of acids (residues of phosphoric acid and sugar 

molecules) interact with each other. Phosphoric acid residues are 

connected by divalent metal ions, mainly magnesium ions, due to 

the interaction of negative charges of phosphoric acid residues with 

positive charges ions. This interaction is essential for the stability of 

nucleic acid structures, especially in the ribosomes. Sugar molecules 

interact with each other due to the hydrogen bond between the 

nitrogenous bases attached to the sugar molecules. Being geometric 

forms, the constituents of nucleic acids interact with each other to 

form new geometric forms-new polytopes. However, it is not known 

how flat nitrogenous bases are oriented in space, whether their 

orientation depends on the type of nitrogenous base. Currently there 

is no information on this. There is also no information on how 

exactly the metal ions are located, connecting the phosphoric acid 

residues. It should be remembered here that the adopted three-

dimensional model of the components and the nucleic acid molecule 

itself is only a model for visual perception. As it was shown earlier, 

the phosphoric acid residue is a polytope of dimension 4, and the 

sugar molecule has a dimension of 12 [1,15-18]. 

 

 
 

Figure 4: Simplified nucleic acid chain. 

 

The movement of triangles along a helix leads to the formation of 

polytopes with antiparallel edges. Consider an arbitrary triangle 

ABC on the plane. Choose some point O/ on the plane outside the 

triangle to his left. Let this point be the base of the axis of the helix 

passing through the triangle. Rotate the ABC triangle 180 degrees to 

the right, moving it up the helix, parallel to the initial plane. In the 

projection on the plane, both triangles ABC and the displaced 

triangle / / /A B C  will be located as shown in Figure 5. 

 
Figure 5: Polytopes of dimension 3 with anti-parallel edges. 

 

It is easy to see that the edges of the triangle ABC and / / /A B C  

are antiparallel. It can now connect in space the vertices of the 

triangle ABC with the vertices of the triangle / / /A B C  so that 

there are no connections of the vertices with the same letters. In a 

projection on the plane the connection are represented by dotted 

segments. It can be seen that the connecting segments also break up 

into pairs of anti-parallel segments. Let us now verify that the image 

ABCA/B/C/ in Figure 5, along with the dotted segments, is a 

projection of a three-dimensional convex polytope. One use the 

Euler-Poincaré equation for this aim 
kf is the number of elements 

of dimension k in polytope of dimension n [14], 
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The shape ABCA/B/C/ in Figure 5 has 6 vertices, 12 edges, 8 

triangular faces (rectangles are not faces by construction, since 

connecting, for example, vertex A with vertices / /,B C  it turns 

out to be exactly the triangle / /AB C ). Substituting these values 

of elements of different dimensions into equation (1), can to find 6-

12+8=2, i.e. the Euler-Poincaré equation holds in this case for n=3. 

This proves that the resulting figure is a convex polytope of 

dimension 3 (if the figure were not convex, the Euler-Poincaré 

equation would be violated). The point O/ in Figure 5 coincides with 

the center of the three-dimensional figure ABCA/B/C/ as diagonal 

figures pass through it and point /O  located on the axis of the 

helix. Point /O can be considered as the origin of three-

dimensional space. Coordinate axes x, y, z in this direction emanate 

from directions / / /, ,AA BB CC respectively. Three pairs of 

these axes define the coordinate planes of the space of this shape. 

Choose some point O// on the plane outside the triangle below it. 

Let this point be the base of the axis of the helix passing through the 

triangle. Rotate the ABC triangle 180 degrees to the left, moving it 

up the helix, parallel to the initial plane. In the projection on the 

plane, both triangles ABC and the displaced triangle / / / / / /A B C  

will be located as shown in Figure 5. 

 

It is easy to see that the edges of the triangle ABC and 
/ / / / / /A B C are antiparallel. It can now connect in space the 

vertices of the triangle ABC with the vertices of the triangle 
/ / / / / /A B C  so that there are no connections of the vertices with 

the same letters. In a projection on the plane the connection are 

represented by dotted segments. It can be seen that the connecting 

segments also break up into pairs of anti-parallel segments. Let us 

now verify that the image ABCA/B/C/ in Figure 5, along with the 

dotted segments, is a projection of a three-dimensional convex 

polytope. Obviously, a shape ABCA//B//C// has as many vertices, 

edges, and flat faces as a shape ABCA/B/C/. Therefore, it satisfies 

the Euler-Poincaré equation (1) with dimensionality n=3, i.e. it is a 

convex three-dimensional polyhedron. The point O// in Figure 5 

coincides with the center of the three-dimensional figure 

ABCA//B//C// as diagonal figures pass through it and point / /O  

located on the axis of the helix. Point / /O can be considered as the 

origin of three-dimensional space. Coordinate axes x, y, z in this 

direction emanate from directions / / / / / /, ,AA BB CC  

respectively. The order of the coordinate axes x, y, z in the figures 

ABCA/B/C/ and ABCA//B//C//, as can be seen from Figure 5, 

coincide. 

 

This suggests that both figures ABCA/B/C/ and ABCA//B//C//are 

topologically one and same figure-the wrong octahedron. 

Interestingly, to transform an arbitrary tetrahedron ABCD into a 

tetrahedron / / / /A B C D  with anti-parallel edges, it is not enough 

to rotate it along a helix by 180 degrees. To do this, you must turn 

the helix together with the tetrahedron and move the tetrahedron 

along the helix in the opposite direction, also rotating it 180 degrees. 

In the initial state, the tetrahedron on the initial helix and the 

tetrahedron on the reversed helix, after its rotation by 180 degrees, 

will have anti-parallel edges. Both tetrahedrons can ABCD and 
/ / / /A B C D  be present by the Figure 6 for rotation to the right. On 

Figure 6 the point O/ is the point of rotation. 

 

 
Figure 6: Polytope of dimension 4 with anti-parallel edges.  

 

Now connect the vertices of the tetrahedrons so that the connecting 

edges (dotted segments) do not have the same letters. The resulting 

figure (along with dotted edges) has 8 vertices (
0f =8), 24 edges

1( 24),f  24 triangular faces (
2( 24),f  and 8 

tetrahedrons (
3f

=8). Substituting these values into equation (1), 

can to find 8-24+24-8=0. Consequently, the Euler-Poincaré equation 

is satisfied in this case for n=4. Thus, the polytope ABCD / / / /A B C D  

in Figure 6 has dimension 4. It is easy to see that this is 4-cross-

polytope. The point O/ in Figure 6 coincides with the center of the 

fourth-dimensional figure ABCD / / / /A B C D  as diagonal figures 

pass through it and point O/ located on the axis of the helix. Point 
/O  can be considered as the origin of fourth-dimensional space. 

Coordinate axes x, y, z, t in this direction emanate from directions 
/ / / /, , ,AA BB CC DD  respectively. Six pairs of these axes define 

the coordinate planes of the space of this shape [6,19,20]. 

 

Choose some point O// on the plane outside the tetrahedron ABCD 

below it. Let this point be the base of the axis of the helix passing 

through the tetrahedron. Rotate the ABCD tetrahedron 180 degrees 

to the left, moving it up the helix, parallel to the initial plane. In the 

projection on the plane, both tetrahedrons ABCD and the displaced 

tetrahedron / / / / / / / /A B C D  will be located as shown in Figure 6. It is 

easy to see that the edges of the tetrahedrons ABCD and / / / / / / / /A B C D  

are antiparallel. It can now connect in space the vertices of the 

tetrahedron ABCD with the vertices of the tetrahedron / / / / / / / /A B C D  

so that there are no connections of the vertices with the same letters. 

In a projection on the plane the connection is represented by dotted 

segments. It can be seen that the connecting segments also break up 

into pairs of anti-parallel segments. Let us now verify that the image 

ABCD / / / / / / / /A B C D  in Figure 6, along with the dotted segments, is a 

projection of a fourth-dimensional convex polytope. Obviously, a 

shape ABCD / / / / / / / /A B C D  has as many vertices, edges, and flat faces 

as a shape ABCD / / / /A B C D . Therefore, it satisfies the Euler-

Poincaré equation (1) with dimensionality n=4. Thus, the polytope 

ABCD in Figure 6 has dimension 4. It is easy to see that this is 4-

cross-polytope [6]. 

 

The point O// in Figure 6 coincides with the center of the 4-cross-

polytope as diagonal figures pass through it and point / /O located on 

the axis of the helix. Point / /O can be considered as the origin of 

fourth-dimensional space. Coordinate axes x, y, z, t in this direction 

emanate from directions / / / / / / / /, , ,AA BB CC DD  respectively. From 

Figure 6 it follows that the sequence of alternation of coordinate 

axes x, y, z, t in a 4-cross-polytope ABCD / / / /A B C D  differs from 

the sequence of alternation of coordinate axes x, y, z, t in a 4-cross-

polytope ABCD / / / / / / / /A B C D . Thus, a surprising fact emerged: 

the figures ABCD / / / /A B C D  and ABCD / / / / / / / /A B C D , being 

4-cross-polytopes, are topologically different from each other. It is 

impossible to move from one of them to another by continuous 

transformation, since they have a different order of alternation of 

vertices. 

 

The polytope of hereditary information 
Let us consider in detail the formation of a polytope of two sugar 

molecules with anti-parallel edges. Here, as in the case of the 

tetrahedron, to form a polytope with antiparallel edges from two 

sugar molecules, you must have one sugar molecule on one helix to 

turn this helix together with the sugar molecule and move the sugar 

molecule along this reversed helix in opposite direction to the 

original helix direction. When the sugar molecule rotates 180 

degrees to the right while moving, then the original sugar molecule 

and the sugar molecule on the reversed helix are two polytopes with 

anti-parallel edges. Both of these sugar molecules in a simplified 

form are represented in Figure 7.  

http://edelweisspublications.com/journals/27/
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Figure 7: The two sugar molecules in a simplified form with anti-

parallel edges. 

 

When the five-carbon sugar molecule is rotated to the left by 180 

degrees, the nitrogenous bases are on opposite sides of both 

molecules, so that for their connection it is necessary to cross the 

entire set of atoms of two molecules. This is unrealistic, therefore 

this option is not considered. When the sugar molecule is rotated 

180 degrees to the left, it is possible to connect the sugar molecules 

through nitrogenous bases only between two different chains of 

nucleic acids or in the case of turning the chain itself in the opposite 

direction.  

 

In full, the sugar molecules have a dimension of 12; in the 

corresponding polytope each vertex must have an edge connection 

with all the other vertices. Knowledge of this now one need for the 

formation of a polytope of dimension 13, it is necessary to connect 

each vertex of one polytope with the vertices of another polytope so 

that there are no vertex connections with the same letters. All 

connecting edges break into pairs of antiparallel edges. At the same 

time, a set of coordinate a two-dimensional plane emanates from the 

center of the formed polytope as from the origin of coordinates. 

Their number is equal to the number of combinations from 13 to 2, 

i.e. 48 coordinate planes. In order to clarify the possible geometrical 

circumstances of the connection of helices in double-helix nucleic 

acid molecules with nitrogenous bases, we are primarily interested 

in the coordinate planes containing these nitrogenous bases /,i iF F .  

 

There are exactly 12 such coordinate planes in the obtained polytope 

of dimension 13. They are depicted in Figure 4 by blue solid lines 

and are indicated below by the vertices of the polytopes contained in 

them  
/
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Other edges of the polytope of dimension 13 are not shown in 

Figure 7, so as not to ignite the figure. In the center of each 

parallelogram, indicated by its four vertices, is the origin of 

coordinates and the corresponding pair of coordinate axes (they are 

not shown). To identify the different hydrogen and oxygen atoms at 

vertices of polytope, they indicated by numbers in brackets at the 

lower indices. It is surprising that the number of coordinate planes 

containing vertices is exactly equal to the number of possible 

compounds of nitrogenous bases 12 [9]. 

 

: , : , : , : , : , : , : , : , , , : , : .A U U A G C C G G U G A U U U C A A A C U G A G   

  

Since each coordinate plane designated by the vertices of the 

parallelograms has a specific atomic environment, it can be assumed 

that each of the 12 possible compounds of nitrogenous bases is 

located on one particular coordinate plane out of 12 possible. This 

solves the question of the possible orientation of the bond of 

nitrogenous flat bases in nucleic acids using ideas about the high 

dimensionality of the constituent nucleic acids. It is also surprising 

that in order to create 13-cross-polytopes, providing the connection 

with nitrogenous bases /,i iF F , nature specially created double-

stranded nucleic acids with oppositely directed spirals. This is 

realized in DNA and RNA when creating regions with inverted 

helices.  

 

In a variety of nucleic acid molecules, the issue of chain interaction 

is important. In ribosomes, RNA interacts with each other due to 

bivalent metal ions (mainly magnesium ions). Positively charged 

magnesium ions attract negative charges of phosphoric acid 

residues, ensuring the stability of the ribosomes. In double-stranded 

nucleic acids, the helices are connected to each other by means of 

nitrogenous bases complementarily interacting with each other by a 

hydrogen bond. However, the magnesium ions and nitrogen bases in 

nucleic acids could not be specifically located. It has been 

established that magnesium ions and flat nitrogenous bases can be 

located inside special polytopes of higher dimension. Here 

knowledge is needed of the higher dimension of phosphoric acid 

residues and sugar molecules. Such polytopes are polytopes with 

anti-parallel edges, i.e. cross-polytopes of higher dimension. 

Binding agents are located on the free coordinate planes of these 

polytopes in the vicinity the center of the polytope.  

 

In this case, the two-dimensional coordinate plane on the boundary 

of the polytope should contain the objects to be joined. In the case of 

magnesium ions, there are four specific coordinate planes inside the 

5 cross-polytope, in which an ion can accommodate, combining 

negative charges. In the case of nitrogenous bases, the existence of 

12 coordinate planes inside a cross-polytope of dimension 13, in 

which flat nitrogenous bases can be located, connecting the helix of 

nucleic acids, was discovered. Exactly as much as there are options 

for combining nitrogenous bases. It is given, that each coordinate 

plane of these 12 planes has a specific environment of atoms. It 

should be assumed that only one of the 12 possible compounds of 

nitrogenous bases is placed in each of these planes. It is surprising 

that the existence of higher-dimensional polytopes with anti-parallel 

edges is possible only in the case of the opposite direction of 

interacting helices, and this is exactly what nature provides in the 

double-helix DNA and in the RNA segments with self-inversion of 

the helix in the opposite direction. 

 

To build the polytopic of hereditary information, we need to 

supplement Figure 6 with edges that create a closed and convex 

figure. In this case, it is not necessary to connect the vertices 

symmetrically relative to the center of Figure 6 with the edges. Each 

vertex will be connected by an edge to the other vertices. In this 

case, the polytope will be a cross-polytope and its dimension is 

equal to half the number of vertices. Indeed, according to, there is a 

relation between 
if

the number of dimension elements i in the 

cross-polytope and the dimension d of the cross-polytope itself 

 
1 1( ) 2 i d i

i df d C    . At the vertex i=0, therefore, according to 

(2) 1

0 02 2 , / 2 13.d

df C d d f    Thus, the polytope of 

the hereditary information has dimension 13. When portraying this 

polytop, we will use the technique that is used in portraying cross-

polytops. We distribute all 26 vertices on the circle so that the 

vertices opposite in Figure 7 remain opposite and there is no edge 

between them (Figure 8) [6]. 

 
Figure 8: The polytope hereditary information. 
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The edges corresponding to the chemical bonds are indicated in this 

figure by thick black solid lines. Anti-parallel edges highlighting 

coordinate planes with vertices corresponding to nitrogenous bases 

are indicated by blue lines. The remaining edges are indicated by 

thin dash-dotted black lines. We emphasize that there is a chemical 

bond between the nitrogenous bases, but it is not covalent. 

Therefore, this connection is not indicated by an edge. 

 

When the polytope of hereditary information moves along the 

common axis of the double helix of nucleic acids following the 

sequence of bases in DNA, the connection between the vertices 
/ / /,i iF F  is carried out by one of the twelve base pairs, which 

occupies one of the 12 coordinate planes of the polytope. By relation 

(2), one can determine the number of elements of different 

dimensions in the polytope of hereditary information.  

 

The number of edges is 2 11

1 13(13) 2 312f C  ,  

The number of triangles is 3 10

2 13(13) 2 2288f C  ,  

The number of tetrahedrons is 4 9

3 13(13) 2 10560f C  ,  

The number of fourth-dimensional faces (simplexes) is 
5 8

4 13(13) 2 41184f C  ,  

The number of fives-dimensional faces (simplexes) is 
6 7

5 13(13) 2 109824f C  ,  

The number of six-dimensional faces (simplexes) is 
7 6

6 13(13) 2 219648f C  ,  

The number of seven-dimensional faces (simplexes) is
8 5

7 13(13) 2 164736f C  ,  

The number of eight-dimensional faces (simplexes) is
9 4

8 13(13) 2 183040f C  ,  

The number of nine-dimensional faces (simplexes) is 
10 3

9 13(13) 2 292864f C  ,  

The number of ten-dimensional faces (simplexes) is 
11 2

10 13(13) 2 159744f C  ,  

The number of eleven-dimensional faces (simplexes) is 
12 1

11 13(13) 2 26624f C  ,  

The number of twelve-dimensional faces (simplexes) is 
13

12 (13) 2 4096.f    

 

The obtained numbers determine the structure of the polytope of 

hereditary information. 

 

The law of conservation of incidents in polytope of 

hereditary information 
The monograph introduced the concept of the incidence coefficients 

of elements of lower dimension with respect to elements of the 

higher dimension and elements of higher dimension with respect to 

elements of the lower dimension. The first characterizes the number 

of elements of a certain higher dimension to which the given 

element of a lower dimension belongs. The second characterizes the 

number of elements of a given lower dimension that are included in 

a particular element of a higher dimension. Here we must remember 

that the vertices of geometric elements of various dimensions are 

atoms, molecules or functional groups. Therefore, the incidence of 

geometric elements to a friend means contact between particles of 

the matter, including living matter. The contact between particles of 

matter can be interpreted as the transfer of information on material 

structures, including biological structures. We introduce the 

notation:

 
i
j ud d

k  is the number of elements of dimension u, which 

include an element of dimension j (u>j) with number i. Thus,

 
i
j ud d

k
 is the incidence factor of element i with dimension j relative 

to elements with dimension u. We introduce the notation also: 

i
j ud d

k is the number of elements of dimension j, which included in 

element i with a dimension u (u > j). Thus, 
i

j ud d
k

is the incidence 

factor of element i with dimension u relatively to elements with 

dimension j [5]. 

 

The smallest dimension of the cross-polytope is 4. From (2) it 

follows that in this polytope there are 8 vertices, 24 edges, 32 two-

dimensional faces, 16 three-dimensional faces (Figure 6). The 

factors of incidents (from smaller dimension to larger) are  

 

0 1 0 2 0 3 0 4 1 2

1 3 1 4 2 3 2 4 3 4

6, 1 8; 12, 1 8; 8, 1 8; 1, 1 8; 4, 1 24;

4, 1 24; 1, 1 24; 2, 1 32; 1, 1 32; 1, 1 16.

i i i i i

i i i i i

d d d d d d d d d d

d d d d d d d d d d

k i k i k i k i k i

k i k i k i k i k i

              

              

 

 

Sum up the incidence coefficients for all vertices, edges, two-

dimension faces and three-dimension faces of the 4-cross polytope 

  

0 1 0 2 0 3 0 4 1 2 1 3 1 4

2 3 3 4 2 4

8 8 8 8 24 24 24

1 1 1 1 1 1 1

32 16 32

1 1 1

544.                                                             (3)

i i i i i i i

i i i

d d d d d d d d d d d d d d
i i i i i i i

d d d d d d
i i i

k k k k k k k

k k k

      

  

      

  

      

  

 

 

The factors of incidents (from larger dimension to smaller, Figure 6) 

are  

 

0 40 1 0 2 0 3 1 2

1 4 2 4 3 41 3 2 3

2, 1 24; 3, 1 32; 4, 1 16; 8; 3, 1 32;

6, 1 16; 24; 4,i 1 8; 32; 16.

i i i i

i i

d dd d d d d d d d

d d d d d dd d d d

k i k i k i k k i

k i k k k k

            

        
 

 

Sum up the incidence coefficients for all elements of the 4-cross-

polytope with dimension larger of zero  

 

0 4 1 4 2 4 3 40 1 0 2 1 2 0 3 1 3 2 3

24 32 32 16 16 16

1 1 1 1 1 1

544.i i i i i i d d d d d d d dd d d d d d d d d d d d
i i i i i i

k k k k k k k k k k
     

              
 (4) 

 

Comparing (3) and (4) you can see that the sum of incidents in a 4-

cross-polytope from elements with a lower dimension to elements 

with a higher dimension is equal to the sum of incidents from 

elements with a higher dimension to elements with a lower 

dimension. Thus, the sum of incidents retains its value when 

changes the direction of the relationship between the elements (the 

law of conservation of incidents).  

 

Theorem 1: In any cross-polytope of dimension n, the sum of all 

incidents of elements of a lower dimension with respect to all 

elements of a higher dimension is equal to the sum of all incidents 

of elements of a higher dimension with respect to all elements of a 

lower dimension and equals the sum of the series 

 
1 2 3 0 1 1

0 1 2 1( )3 ( )3 ( )3 .... ( )3 , ( ) 2 , 0 ( 1).n n n n d d

n d nf n f n f n f n f n C d n     

         

 

Proof According to equation (2), each cross-polytope of dimension n 

has 2n=vertices. The peculiarity of a cross-polytope is that each of 

its vertices has an opposite vertex, with which it is not connected by 

an edge. Moreover, there is one edge between this vertex and all 

other vertices. We subtract from the total number of vertices two 

vertices (the selected vertex and its opposite) 2n-2. This is the 

possible number of edges emanating from the selected vertex. Thus, 

the incidence coefficient of the edges of any vertex is  

 

0 1

1

1 02( 1) 2C , 1 ( ).i nd d
k n i f n      

 

A cross-polytope of any dimension can be depicted as a projection 

on a two-dimensional plane. In this image, all its vertices are located 

on a circle, with the selected vertex and its opposite vertex located 
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symmetrically relative to the center of the circle. A mentally drawn 

line through these two vertices halves the circle [5]. 

 

Therefore, the number of variants the location of the edges from the 

selected vertex to the other vertices in one of the halves of the circle 

is n-1, i.e. the number of combinations of n-1 vertices one by one. 

Since there are two halves of a circle, then for the total number of 

vertex selection options for edge formation, this number of 

combinations should be multiplied by 2. This is the meaning of the 

expression for the incidence rate of any vertex in the n-cross-

polytope with respect to the edge. To further prove the theorem 1 

and clarify the nature of the formation of the coefficients of 

incidence in the n-cross-polytope, we will use this technique. We 

arrange the vertices of the 4-cross-polytope in two lines, so that the 

vertices unlinked by an edge form vertical pairs: each vertex in the 

top line is not connected by an edge to the vertex in the bottom line 

located strictly under this vertex in the top line.  

 
1 2 3 4

0 0 0 0

5 6 7 8

0 0 0 0

      

      

d d d d

d d d d  
 

We choose some vertex in the top line (5), for example 1

0d . It 

cannot be connected by an edge with a vertex 5

0d  in the bottom 

line, but it can be connected by an edge with other vertices of the 

bottom line. The number of such options is 3, i.e. with n=4 are
1 1

1 33 nC C  . However, a vertex 1

0d  may be connected by an 

edge with any of the remaining three vertices in the top line (5). 

Therefore, the incidence coefficient of a vertex with respect to an 

edge in 4-cross-polytope
0 1

1

12C 6, 1 8.i nd d
k i     when 

considering the belonging of a vertex 1

0d to two-dimensional faces, 

it is necessary to determine the number of options for the 

participation of two vertices in the top line (5) (without a vertex  

1

0d
) and in the bottom line (5) (without a vertex 5

0d ). This will be 

the number 1

32C . In addition, as the vertices of the triangle, there 

may be vertices located in the upper and lower lines (5) in a cross-

section way.  

 

There are 6 such variants in (5), i.e. more 1

32C . Therefore, the 

incidence coefficient of a vertex with respect to a two-dimensional 

element in 4-cross-polytope is 
0 2

2 2

12 C 12, 1 8.i nd d
k i   

multiplying this number by the number of vertices in 4-cross- 

polytope you can get the total number of incidents of vertices to 

two- dimensional elements in 4-cross-polytope equal to 96. This 

number coincides with the corresponding number, defined earlier. 

Combination 1

0d  with three the different vertices from (5) can get 

the incidence coefficient of vertex to the three-dimension body 

(tetrahedron) for condition absent in combination opposite vertices. 

Can to show that this combination is 8 
1
0 3

3 3

32 8, 1 8.
d d

k C i    ; 

multiplying this number by the number of vertices in 4-cross-

polytope you can get the total number of incidents of vertices to 

three-dimensional elements in 4-cross-polytope equal to 64. This 

number coincides with the corresponding number, defined earlier. 

Combination two vertices, for example 1

0d  and 2

0d  (the edge 1

0d

2

0d ) with two the different vertices from (5) you can get the 

incidence coefficient of edge to three-dimension body (tetrahedron) 

for condition absent in combination opposite vertices. Can to show 

that this combination is 4
1
1 3

2 2

22 4, 1 8.
d d

k C i   
; Multiplying 

this number by the number of edges in 4-cross-polytope you can get 

the total number of incidents of edges to three- dimensional 

elements in 4-cross-polytope equal to 96. This number coincides 

with the corresponding number, defined earlier. 

Combination two vertices (the edge 1

0d
2

0d ) with one the vertex 

from (5) can get the incidence coefficient of edge to triangle for 

condition absent in combination opposite vertices. Can to show that 

this combination is 4
1
1 2

1

22 4, 1 8.
d d

k C i   
, multiplying this number 

by the number of edges in 4-cross- polytope you can get the total 

number of incidents of edges to triangle in 4-cross-polytope equal to 

24. This number coincides with the corresponding number, defined 

earlier. In general case can write of 2n vertices of the n-cross-

polytope in two lines  

 
1 2 3

0 0 0 0

5 6 7 2

0 0 0 0

     ... 

     ...  

n

n

d d d d

d d d d

,   (6) 

 

Where vertex in the top line is not connected by an edge to the 

vertex in the bottom line located strictly under this vertex in the top 

line. The incidence coefficient of a vertex with respect to an edge in 

n-cross-polytope is 0 1

1

1 02C , 1 ( ).i nd d
k i f n  

 

The incidence coefficient of a vertex with respect to a two-

dimensional element in n-cross-polytope is 

0 2

2 2

1 02 C , 1 ( ).i nd d
k i f n   the incidence coefficient of a vertex 

with respect to a three-dimensional edge in n-cross-polytope is 

0 3

3 3

1 02 C , 1 ( ).i nd d
k i f n    Go on can to say the incidence coefficient of 

a vertex with respect to a (n-1)-dimensional element in n-cross-

polytope 
0 1

1 1

1 02 C , 1 ( ).i
n

n n

nd d
k i f n



 

   Obviously, that the incidence 

coefficient of a vertex with respect to n-cross-polytope is 

0
01, 1 ( ).i

nd d
k i f n   Multiplying of the incidence coefficients 

of a vertex with respect to different dimension elements in n-cross-

polytope and sum the product you can get the common express for 

the number of incident vertices to elements of different dimension in 

a n-cross-polytope 

 
1

0 1 1 2 2 1 1 1

0 1 1 1 0 1 0

0

(2 2 2 ... 2 ) ( ) 2 ( )3 .
n

n n i i n

n n n n

i

f C C C f n C f n


  

   



     
 

 

In this way you can get the common express for the number of 

incident edges to elements of different dimension more one in n-

cross-polytope,  

 
2

0 1 1 2 2 2 2 2

1 2 2 2 1 2 1

0

(2 2 2 ... 2 ) ( ) 2 ( )3
n

n n i i n

n n n n

i

f C C C f n C f n


  

   



     
 

 

And go on. In result, one can get the common express for the sum of 

all incidents of elements of a lower dimension with respect to all 

elements of a higher dimension in a n-cross-polytope 

 
1

1 2 0 1 1 1

0 1 1

0

( )3 ( )3 ... 3 ( )3 , ( ) 2 .
n

n n n i n i i

n i i n

i

f n f n f f n f n C


      





    
 (7).  

 

Let 
i

h jd d
k be the number of elements of dimension h in an n-cross-

polytope belonging to some one element of dimension j ( )h j that 

is i

jd . Obviously, this number is equal to ( )h sf j  for simplex, 

and 1 ( )j cri f n   for n-cross-polytope. So, elements of a cross-

polytope are simplexes the product ( ) ( )h s j crf j f n  corresponds to 

the number of elements of dimension h belonging to all elements of 

dimension j for a simplex. This product is equal to 1

1( ) d

d nf n C 

  

1 1 1 1

1

( 1)! !
2 2 .

( 1)!( )! ( 1 )!(1 )!

h j n j j

j n

j n
C C

h j h n j j

    






    
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Let us compare this number with the number of elements of 

dimension j, which have elements of dimension h in the n-cross-

polytope.  

 

1 1 1

1

! ( 1)!
( ) 2 2 2

( 1 )!(1 )! ( 1)!( )!
i
h j

n h h j h j h j

h cr n n hd d

n n h
k f n C C

n h h n j j h

     

 

 
 

     

 

 

Obviously, these numbers are equal to each other. This proves that 

the number of elements of dimension h in an n-cross-polytope 

belonging to all dimensions of j ( )j h  in an n-cross-polytope is 

equal to the number of elements of dimension j, which have 

elements of dimension h as elements.  

 Thus, the total number of incidents of elements of a smaller 

dimension with respect to elements of a higher dimension is equal to 

the total number of incidents of elements of a higher dimension with 

respect to elements of a smaller dimension. The total number 

defines expression (7). Q.E.D The polytope of hereditary 

information is a cross-polytope of dimension 13. Substituting the 

value n=13 and the values of ( )if n  calculated in the previous 

section in expression (7), we find the total value of the incident flow 

in the polytope of hereditary information. 

 
12

12 9

0

(13)3 1.78 10i

i

i

f 



 
 

 

A significant value of the total incidence stream in the polytope of 

hereditary information indicates an intensive exchange of 

information between elements of the polytope of hereditary 

information. For example, this value is 400 times larger than the 

incident flux in a simplex of dimension 13. This may explain for the 

recently discovered epigenetic principle of the transmission of 

hereditary information without changing the sequence of genes in 

DNA and RNA molecules [8]. 

 

Conclusion 
 

The representations of the sugar molecule and the residue of 

phosphoric acid in the form of polytopes of higher dimension are 

used. Based on these ideas and their simplified three-dimensional 

images, a three-dimensional image of nucleic acids is constructed. 

The geometry of the neighborhood of the compound of two nucleic 

acid helices with nitrogen bases has been investigated in detail. It is 

proved that this neighborhood is a polytope with anti-parallel edges 

of dimension 13 (13-cross-polytope). This polytope is called of the 

polytope of hereditary information. The geometry of the polytope of 

hereditary information is investigated. It is shown that in the flat 

coordinate planes of the polytope of hereditary information there are 

located flat complementary hydrogen compounds of the nitrogenous 

bases of two nucleic acid helices. It turned out that the number of 

these coordinate planes (12) is exactly as many as there are various 

options for hydrogen compounds of nitrogenous bases. Thus, in 

each of these coordinate planes one of the possible types of bonding 

of nitrogenous bases is located.  

 

Thus, the possible orientation of flat nitrogenous bases in the space 

of higher dimension is determined. An image of the polytope of 

hereditary information with a specific indication of its coordinate 

planes is constructed. The incidence of low-dimensional elements to 

the highest-dimensional elements of this polytope is studied, as well 

as the incidence of higher-dimensional elements to low-dimensional 

elements of this polytope. The values of the total incidence flows 

from low-dimensional elements to higher-dimensional elements and 

vice versa are determined. These values turned out to be equal (the 

law of conservation of incidents) and exceeding one billion. This 

indicates an intensive flow of information between the elements of 

the polytopic of hereditary information, ensuring the transmission of 

hereditary information. This can serve, in particular, to explain the 

existence of the transmission of hereditary changes without 

changing the sequence of genes (epigenetics). 
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