Introduction
Some chemical
substances are dangerous from the viewpoint of fire or explosion
[1-3]. A database containing the causes of fire accidents will be useful for
the safety and education of chemical processes [4,5]. For example, occupational
accident data were collected for many years and constructed an explosion and
fire database, which described the contents of the disclosure and the outline
of the extraction/search method of cases, and also introduced the transition of
chemical process
disasters and analysis examples by industry [4].
As stated in accident reports in 2010’s (more than
ten years ago), fire in a chemical laboratory sometimes occurred by igniting
organic solvents (flash and ignition points/OC) such as methanol
(11, 646), n-hexane (-22, 225), and Tetrahydrofuran (THF) (-17, 321) [6,7].
· When
carrying out recrystallization using an organic solvent (unreported), a
beaker containing the solution was heated on an open flame and ignited, causing
a small fire.
· When
an Erlenmeyer flask with methanol in it was placed in a heating-type constant
temperature water bath, water in the water bath was depleted, the empty water
bath was heated and its temperature became high, and then the methanol ignited.
· While
heating methanol in a fume hood, an
experimenter returned to his or her room. A break occurred, and the methanol ignited. An organic solvent
close by also ignited, and the fume hood burned.
· 3,5-di-t-butylbenzonitrile
was put in a conical beaker in a fume hood to recrystallize it, n-hexane was added to the beaker, it was
covered with aluminum foil, and
heated on a hot plate while stirring it with a magnetic stirrer. Bumping of the
solvent occurred, and it ignited. The experimenter burned his or her face and
right arm during the ignition.
· During
distillation of THF anhydrous, the
inside pressure was increased, and the THF
leaked and was ignited by a mantle heater.
The ground glass joint came off, and the
THF inside was also ignited, causing
a large fire in which the flames reached the ceiling.
· An
unattended reaction using THF at
night caused an explosion and flames. A person outside of the university
noticed that the laboratory window was bright red and reported it to the fire
department.
· While
distilling THF, a sudden explosion
occurred, and a fragment of the flask penetrated the experimenter’s heart,
which resulted in instant death.
· A
flask suddenly exploded during the reaction using THF as a solvent, and the burned THF was exposed to the experimenter’s face. The face was restored
by plastic surgery, leaving a keloid on the entire face of the experimenter.
· When a
glass stopper was taken to add benzophenone during purification and
distillation of THF, THF boiled rapidly and spouted, ignited,
and exploded in the fume hood exhaust pipe. The experimenter burned his or her
face and upper arms.
· When THF was constantly distilled, a flask
was cracked, and THF leaked. The container was almost empty.
· When
attempting to distill THF, an
experimenter mistakenly turned on the power of the heating device of the ether
distillation unit (no reflux pipe connected) next to it, and it exploded.
In order to avoid accidents due to organic solvent
like them, a mechanochemical synthesis may be a good way to reduce the amount
of or use of organic solvent compared to conventional synthesis in solution. So
we attempted to compare conventional solution method and wet mehanochemical
method to reduce methanol solvent for azo-containing amino acid derivative Schiff base
copper(II) complexes [8,9].
Experimental
· Conventional solution method: In
an Erlenmeyer flask (200 mL), methanol solution (100 mL) of L-phenylalanine (0.033 g, 0.20
mmol), KOH (0.011 g, 0.20 mmol), and azo-salycylaldehyde (0.045 g, 0.20 mmol)
was stirred for 3hr at 40 OC. Cu(OAc)2・H2O was added and stirred for 3h and
filtrated and dried (Figure 1).
· Wet mehanochemical method: In a
mortar containing a small amount of methanol, L-phenylalanine (0.033 g, 0.20 mmol), KOH (0.011 g, 0.20 mmol), and
azo-salycylaldehyde
(0.045 g, 0.20 mmol) were added and grind for 5 min at room temperature to give
red product. Cu(OAc)2・H2O
was added and grind for 5 min to give yellow-green product and washed with
water and dried (Figure 2).
Results and Discussion
The products were confirmed X-ray single crystal structure analysis (Figure 3). The solvent affected the products. Water molecules in methanol solvent or hydrate ligand coordinated to copper for the conventional method, while similar water and methanol molecule of small amount of solvent for grinding coordinated to copper for the wet mechanochemical method. However, the quality of the resulting data of X-ray crystallography was quite poor for both cases (Figure 4). Unfortunately, in a normal standard, we cannot repot this result as an original research article in any journals.
Conclusion
In this way, substitution of organic solvents (to
use higher flash and ignition points but required similar polarity or
solubility) as well as synthesis methods associated with potentially dangerous organic solvents may
be possible depending on the application or purpose. Even if it is a finding
that cannot be made into a formal academic paper, we would like to inform you
as a safety measure and know-how within the research group, so we wrote it here
to contribute to the safety of chemists and the development of chemistry.
Acknowledgement
This work was supported by a Grant-in-Aid for
Scientific Research (A) KAKENHI (20H00336).
References
- Matsunaga
T. Handbook for explosion or explosion risk of chemical substances (2020) Maruzen,
Japan.
- Yokokawa
K, Yamamoto H, Murata S and Tomita K. Firefighting chemistry; For safe handling
of chemical substances (2018) Baihukan, Tokyo, Japan
- The
Chemical Society of Japan. Chemical safety note for safe laboratory management
(2016) Maruzen, Japan.
- Itagaki
H. Safety Engineering (2013) 52: 41-44.
- Introduction
to Process Safety for Undergraduates and Engineers (2016) John Wiley and Sons, United
States.
- Tokyo
University of Science (2009).
- https://www.nanomisttechnologies.com/solvents-list.html
- Akitsu
T, Onami Y and Katsuumi N. Do Thermally Mild Chemical Reactions (for Avoiding
Fire Accidents) Give Rise to Unexpected Products? (2020) Edelweiss Chem Sci J
3: 15-16 https://doi.org/10.33805/2641-7383.118
- Otani
N, Furuya T, Katsuumi N, Haraguchi T and Akitsu T. Synthesis of amino acid
derivative Schiff base copper(II) complexes by microwave and wet
mechanochemical methods (2021) J Indian Chem Soc 98: 100004. https://doi.org/10.1016/j.jics.2021.100004
Corresponding author
Takashiro Akitsu, Department of
Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan, E-mail: akitsu2@rs.tus.ac.jp
Citation
Akitsu T, Onami Y and Furuya T. Attempt
to reduce potentially flammable organic solvents in chemical synthesis (2021)
Edelweiss Chem Sci J 4: 16-18.
Keywords
Organic solvent, Ignition point, Schiff
base metal complexes, Mechanochemical synthesis, Crystal structure analysis