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Abstract

Researchers in the past investigate the Sumudu Adomian Decompdéétbnd (SADM), the Laplace Adomian Decomposition Meth
(LADM), the PadéSumudu Adomiarbecomposition Methods (PSADM). In this paper arealyse the behaviour of the functiogi[.] called
doublePadéapproximationusing in thePadéSumudu Adomian Decomposition Method (PSADM), @mdvide some criteriums for chosirig
andM to obtain the bst Pad approximatiorsolution in the case of nonlinegchrédingeequation and nonline#dV Burger'sequation.

Keywords: AdomianDecomposition Mthod (ADM),PadéSumudu Adomiamecomposition Mthod (PSADM), MnlinearSchrédingeequation,

NonlinearKdV Burger's equation.

Abbreviation: SADM-Sumudu Adomian Decomposition Method, LABMplace Adomian Decomposition Method, PSABRdéSumudu Adomian

Decomposition Methods

Introduction

To solve optimally the problems in science engineering, many works
havebeen proposed to study the stability for the nonlinear system [1].
Diff erentstrong scheme have been established to solve the nonlinear
problems asAdomian Decomposition Method (ADM) [EB], Laplace
transform combinedvith Padéapproximation [914], PadéSumudu
Adomian Decomposition Method (PSADM) [15] homotopy
perturbation method [16,1Mlodified decomposition method [18)]
have been obtained to appimate the analytical solutions. In the
present paper, we analyze the behaviour oPd@éSumudu Adomian
Decomposition Methods solution (PSADM) [15] in thmase of
nonlinear Schrdinger equations [21] and KdBurgers Equations
[22]. It can be seen in my literatures that the Sumudu Adomian
Decomposition Methods (SADM) and Laplace Adomian
Decomposition Method§LADM) give similar results, the Sumudu
transform present some advantage in calculatiecause have unit
preserving properties (S[1] = 1). TiRadéapproximatios havebeen
used to control the convergence of the series solution. The function
Puml[.], called doublePadéapproximation [15] can also be use for
LaplaceAdomian decomposition method, and obtain the new solution.
In this papemwe analyze the behaviour of theadéSumudu Adomian
Decomposition MethodSolution and provided some criteriums for the
choice of the best PSADMs.

Padé Approximation

The |L,M]-orderPadéapproximation of the functiohdenote byP, M
[f], is the quotient of two polynomial (x) andQu(x) of degreed and
M, respectively

R

9. (0 X1 [a b. 1)

Remark 1: The [L,M]-order Padéapproximation of the function f(x) is
in the form:

_ +tax t. &Xx
Ruml FO9] =2 g
T L<M, limPy, [f(9] = 0.
If L<M, ||n! Puw ] =2=,(- or 4 according to the sign

L
of & .
bM
Definition 1: Let f be function of two variables x and t. We defined two
dimensionaPadéapproximationPywm [f](x, t) of the function f as

P [f] (.9 = REMTPMTAT (x,9), 2

where B*M[f] (x, t) denote thgL,M]-order Padéapproximation of f(x,
t) with respect to the variable t, and[B,M] [f] (X, t) denote th¢L,M]-
order Padéapproximation of (i, t) with respect to the variable x.

If M=L, we will denote the diagon&adéapproximation of order M
by Rwm [f] (X, t), and called[M,M]-order Padéapproximation or M
Padéapproximation of (K, t).
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PSADM Procedure [15]

By replacing the Sumudu transform by Laplce transform and using the
sameprocedure we will obtain the Laplace Adomian Decomposition
Methods instead of Sumudu Adomian decomposition method.

We consider the PDE in the form as following:

Leu(x,t)+ Lau(x ) +R(u(x,t)+G (u(x,t))=F(x.t) ?3)
with u(x,0=h(x) the initial condition, k the highest order tfierential
respectto x, L, thefirst order diferential respect t6 G(u(x,y)) is the
nonlinear termf(x.t) is the inhomogeneous term, aRdhe remaining
linear terms of loweorder derivative.

The procedure of PSADM for solvir@) can be write as follows.

Step 1: Take the Sumudu transform to the equation (3) and apply the
differentiationproperty of Sumudu transform to obtain

S[u(x,H)](v)=h(x)+v.S[-Lau(x,)-R(u(x,1))-G(u(x,t)) +F(x,)](v). 4)

Step 2: Apply the inverse of the Sumudu transform to the above
equation to obtain

u(x,9=S,[h(I()+S, V. S{-Lau(x,9-R(u(x,9)-Gux, O)+F (X DIW)I(Y).
(6)

Step 3: Use Adonian decomposition method to decomposite the
nonlinear functionG(u) and theu, respectively, as

Guw=a A
And i
U(x 0= & 4 (% D,
Step 4: Write the equation in thenlfc[))rm
éoun<x,t)=so1[m>)](1 +n°§'$*[ VA At REFE E Xt R0

which lead to the SADM recursive relations:
uo(x,H=S,* [N(X)](t)

UC)=S L a () ROk (kDY HF 06D Al (WI(D):

Step 5: Deduct the SADM approximation solutiogapnv=u(x,t,j):
u(x,tj)=potust ...Huj.

Step 6: The [L,M]-order PSADM solutioruPSADM-u(x,t,j,[L,M]) is
givenby

u(x,ty, [L,M])=P[L/M] [usapM (X,1),
if L=M, we denoté-PSADM solution by

u(x,t,j, M)=Pimmn [Usaou] (X,9).

Remark 2: In step 5 we obtain the Sumudu Adomian Decomposition
Method (SADM), instead of Sumudu transform we can use other
integral transform like Laplace transform to obtain in step 5 the
Laplace Adomian DecompositioMethod (LADM). The Sumudu
Adomian Decompositioklethod and Laplace Adomian Decomposition
Methods give similar result. The Sumudu transfaine to the nit
preserving properties (S(1)s provided some advantages in
calculation.

For different type ofPadéapproximation and fferent order of the

Padé approximation we will analyse the behaviour of the PADM
solutions.

Example 1

In the first case of the following example, we will show that for
different type ofPadéapproximation:

ulx, t, j, [LM]) , for L > M,

u(x, t, j, [L,M]), for L =M, and

u(x, t,j, [L,M]), for L <M, we have different solutions and one of them
is more accurate.

In the second case of the following example, we will show that for
diagonal Padé approximationu(x,t,j, [L,M]), for L = M, we can
increase the accuracy of the method tyréasing or reducing de value
of M accordingly to the topologie of the solution.

Case 1: Consider the equation:

i R2ufu 6 @
pt

U(x, 0) = & ®)
We can easily deduice the SADddlution [15]:
"SADM= U x 1 ) =€ur o (i %+( iy? ...-i-j—ll{-it)j ©

The algorithm is coded by the symbolic computation software
Mathematica. We knowi(x,t) = é**V is the exact solution for the
Problem.

Figure (1a) andFigure (1b) show the real part and imaginary part of
SADM solutionusapw = Ux,t,15) in DomainD = [0,2] % [0,2].

For different values of L and M we ploifgrent orders of the PSADM
solutions to see the behaviour of the methods.

Figure (1c) and Figure (1d) show respectively, the real part and
imaginary part of PSADM solutiotesapm = U(x,t,15,[7,0]) inDomain

D =[0,2] x [0,2].

Figure (le) and Figure (1f) show respectively, the real part and
imaginary part of PSADM solutiofesapm = U(x,t,15,[1,7]) in Domain

D =[0,2] x [0,2].

Figure (2a) and Figure (2b) show respectively, the real part and
imaginary part of PSADM solutiotesapm = U(X,t,15,[7,1]) in Domain

D =[0,2] x [0,2].

Figure (2c) and Figure (2d) show respectively, the real part and
imaginary part of PSADM solutiotipsapm = U(X,t,15,[7,7]) or in short
u(x,t,15,7) in DomainD = [0,2] x [0,2].

Figure (2e) and Figure (2f) show the real part and imaginary part of
the exacsolutionu(x,t) in DomainD = [0,2] x [0,2].

PSADM. Langfals 00,10

o) PSADAL Rejaix . 156,|1.T

[) PSADM. hugjuixy 15

Figure 1: SADM and PSADM solutions using 15 terms.
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(a) SADM (b) SADM
Abs[Re[u(x,t)-u(x.t,15)]]. Abs[Re[u(x.t )—\.J(x.tAIS)]].

a7

(c) PSADM (d) PSADM
Abs[Refu(xt)-u(x,t,15,[T0)].  Abs[ Imglu(x.t)-u(x,t,15,[7,0)])

R » ; " (e) PSADM (f) PSADM
(e) Brort= Relnlxstll () Brsact: Tinigfu(x)]. Abs[Refu(x,t)-u(x,t,15,7)]]. Abs[ Img[u(x,t)-u(x,t,15,7)]].
Figure 2: (a)-(d) PSADM solutions using 15 teen(e) and (f) exact
g (@ solutions. g (e ® Figure 3: Absolute errors

In domainD = [0, 2] x [0, 2] we can see that théx, t, 15, [1, 7]) and

u(x, t 15, [7, 1]) are not smooth compare to the other solutions. Next
we plots the absolute errors.

Figure (3a) and Figure (3b) show respectively the absolute error for
real part andmaginary part of the Sumudu Adomian Decomposition
solutionu(x, t,15).

Figure (3c) and Figure (3d) show respectively the absolute error for
real part and imaginary part of thePadé Sumudu Adomian
Decomposition solution(x, t, 15, [7, 0]).

Figure (3e) and Figure (3f) show respectively the absolute error for
real part andmaginary part of the Sumudu Adomian Decomposition
solutionu(x, t, 15).

Now let see the behaviour of the SADM, PSADM solutions in domain
D =[0, 10]x [0, 10].

(b) SADM: Imgju(xt.15]]

Figure (4a) andFigure (4b) show the real part and imaginary part of
SADM solutionusapm= ufX, t, 15) in DomainD = [0, 10] x [0, 10].

Figure (4c) and Figure (4d) show respectively, the real part and
imaginary part ofPSADM solution upsapw = U, t, 15, [7, 0]) in
DomainD = [0, 10] x [0, 10].

Figure (4e) and Figure (4f) show respectively, the real part and
imaginary part ofPSADM solution Upsapm = U(X, t, 15, [1, 7]) in
DomainD = [0, 10] x [0, 10].

Figure (5a) and Figure (5b) show respectively, the real part and
imaginary part ofPSADM solutionupspom = U(X, t, 15, [7, 1]) in
DomainD = [0, 10] x [0, 10].

Figure (5c¢) and Figure (5d) show respectively, the real part and
imaginary part ofPSADM solutionupspom = U, t, 15, [7, 7]) or in
short ug, t, 15, 7) in DomainD = [0, 10]x [0, 10].

Figure (5e) andFigure (5f) show the real part and imaginary part of
the exacsolutionu(x, t) in DomainD = [0, 10]x [0, 10]. Figure 4: SADM and PSADM solutions using 15 terms.

(e} PSADM: Reju{xt 15.J1.7])}. (f) PSADM: lmgfuix,t 15|1.7]}
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n) PSADM: Refufx.1.15,(7.1]) (b) PSADM: lingju(x.1.15.|7.1])

{c) PSADM: Reju(x..15.7) (d} PSADM: Ingfufx,15.7)

(©) Exact: Rofudx.t))

() Exnet: Tosgiulx.e)]

]
Figure 5: (a)-(d) PSADM solutions using 15 terms, (e) and (f) exact
solutions.

We can see in this example, in dom8irr [0, 2] x [0, 2] the SADM
behavewell, but in domainD = [0, 10] x [0, 10] the SADM give bad
result. Only theu(x, t, 15, 7) approaching well the exact solution in the
domainD = [0, 2] x [0, 2] andD = [0, 10] % [0, 10]. Even in domain

D = [0, 2] x [0, 2] the graph of absoluterror show the [77]-order
PSADM (in short 7PASDM) solution is better thaBADM solution
and other type of PSADM solutions. The solution can be pelfgm
choosing dferent value of M.

Remark 3

The real part and imaginary part of the exact solution are bounded,
andthe real part and imaginary part of the SADMs are not bounded, in
this case in better to use diagori®ddéapproximatin to make bounded
the Approximate solution.

Case 2: Consider the equation:

i%nu Slufu € (11)

u(x, o) = &> (12)
We can easily deduce the SADM solution [15]:
@) @ty @) g

) @ )

And the [LM] order PSADM solution:

u(xt, )= €% g -3it
¢

Upsapm= U(X, t, }, [L,M]) = Pum [u(x, t, DI (%, 9), (14)

The algorithm is coded by the symbolic computation software
Mathematica.

We knowu(x, 1) = €Y is the exact solution of the Problem.

Figure (6¢) andFigure (6d) show respectively the absolute error for
real part and imaginanyart of the PSADM solution(x, t, 20, 7).

Figure (6e) and Figure (6f) showrespectively the absolute error for
real part and imaginanyart of the PSADM solution(x, t 20, 8).

Figure (6a) and Figure (6b) show respectively the absolute error for
real part andmaginary part of the SADM solutiou(x, t, 20).

(a) SADM
Aba[Refnlx,t)-ulxe, M)

b) SADM

Absdingufx. t)-ulx 2. 20}

{¢) PSADM
Abs|Refu(xt joufxt.20,7)]

d) PSADM
Abslisngiuix.thu(x.1 2.7}

(¢) PSADM
Absw|Redulx,t Jous[x,t,20,5)]

(f) PSADM

Abshimgiuix.t)-uix . 2.8)}|
Figure 6: Absolute error

The graph of the absolute errors show that the SADM solution give

better approximation than -érder PSADM solution, and the-@der

PSADM solutiongive better approximation than SADM solution. The

solution can be perform lhoosing dierent value of M.

Example 2
Case 1: Consider the equation:

BU - uu L, 8
‘:u(x, 0= 2seé (x) (15)
bxi RtIR,,

Using the SADMSs, we can deduice:

u, =8 TU % 91( ), (16)

W =5 vg % y 6 Al NO a7)
: 8)
u, =5 v % W, 6 AJONO 19)

The solution is given by:

ux)=u, +u

2

U U+...(0

The Sumudu Adomian Decomposition solution is given by

Citation: Richard M and Zhao W. Behaviour analysis of the padé sumudu adomian decomposition method solution

(2021) Edelweiss Appli Sci Tech 5: 39-45.

42


http://edelweisspublications.com/journals/44/Edelweiss-Applied-Science-and-Technology-(ISSN:-2576-8484)
http://edelweisspublications.com/index.php
http://edelweisspublications.com/index.php
http://edelweisspublications.com/index.php

NPT Y
(I!!’,!l/ Richard M, et al. Edelweiss Applied Science and Technology, 2021 PDF: 193, 5:1

R

u(xt j)=u, {4 ® U y+.. Yy (1)

Then the [M,N}oder PadéSumudu Adomian Decomposition solution
is givenby

u(xt, j,IM,NJ) = R, , (USADMN). (22)

By using the symbolic computation software Mathematica.

The figure (7a), Figure (7b), Figure (7c) and Figure (7d) show
respectively the curve of SADMolutionu(x, t, 3), PSADM solution
UpsaDm= U(X, t 3, [2,2]), Upsapm= U(X, t,3, [1, 2]) and the exact solution
u = u(x,t), in domainD = [-0.5, 0.5] x [0, 01]. The exact solution is
given byu(x, f) = -2secR(x-4t)

fe) wiz .3, (0, 2]) (d) ulz 1)

Figure 7: (a) SADM solution, (b) and (c) PSADM solutions using 3
terms, (d)exactsolutions.

Figure (8a), Figure (8b), Figure (8c) and Figure (8d) show
respectively the curve of SADM solutiarfx, t, 3), PSADM solution
Upsapm= U(X, t, 3, [1, 2]) and the exact solutiam= u(x, t), in domainD
=[-1,1] %[0, 1]

(d) ulx, )

() u{z,2,3,[1,2]).

Figure 8: (a) SADM solution, (b) and (c) PSADM solutions using 3
terms, (d)exact solutions.

We can see the SADM, [2]- order PSADM and [12]-order PSADM
solutionsbehave well in domai® = [-0.5, 0.5] x [0, 0.1], but only [1
2]-orderPSADM solution give betteresult in domairD = [-1, 1] x [0,

1]. The [2 2]-order PSADM solution in this case in not better than [1
2]-order PSADM solution. Then the diagon&adéapproximation are

not accurate itthis case. It is recommendéadcase to use [M,Nprder
Padéapproximatioowi t h NM  #

Case 2: Consider the equation:

éu +quy -by, &

|
u(x 0= Ry, @3)
P oc .
Ixl R IR,
We know for g = 6P -% andsubject to the initial condition
u(x’ 0) = LéO(
1+e™

the exact solution is given by:

u(x, t) = ksech[k(x - K 1)]
For k = @5, thefigure (9a), Figure (9b), Figure (9c), Figure (9d), and
Figure (9e) show respectively theurve of the SADM solutionSADM

=u(x, t, 4), PSADM solutionsi(x, t, 4, 2), u(x, t 4, [0, 2]), u(x, t, 4, [2,
0]) and the exact solution.in domainD = [0,1] x [0, 2]

{#,2,4,]10,2]) (d) wia r,4,02.00)

4,

Figure 9: (a) SADM solution, (b) and (d) PSADM solutions using 4
terms, (eexact solutions.

For k = 05, the figures (10a), (10b), (10c), and (10d) show
respectivelythe absolute error curve for the SADM solutioghpm =
u(xt,4), PSADM solutionsu(x,t,4,2), u(xt,4,[0.2]), andu(x,t,4,[20]) in
domainD =[0,1] x [0,2]

The SADM and [22]-order PSADM (or in short-PSADM) provide
sameresults. The [p2]-order PSADM solution in this case providing
better errorthan [2 2]-order PSADM and [2 O]-order PSADM
solutions. The diagon&adéapproximations are not recommended in
this case.

Remark 4

The following conditions can help to choose the B&ADM soluion.
Condition (*)

If
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