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Abstract 
Researchers in the past investigate the Sumudu Adomian Decomposition Method (SADM), the Laplace Adomian Decomposition Method 

(LADM), the Padé Sumudu Adomian Decomposition Methods (PSADM). In this paper we analyse the behaviour of the function P[L/M] [.]  called 

double Padé approximation using in the Padé Sumudu Adomian Decomposition Method (PSADM), and provide some criteriums for chosing L 
and M to obtain the best Padé approximation solution in the case of nonlinear Schrödinger equation and nonlinear KdV Burger's equation. 

Keywords: Adomian Decomposition Method (ADM), Padé Sumudu Adomian Decomposition Method (PSADM), Nonlinear Schrödinger equation, 

Nonlinear KdV Burger's equation. 
Abbreviation: SADM-Sumudu Adomian Decomposition Method, LADM-Laplace Adomian Decomposition Method, PSADM-Padé Sumudu Adomian 

Decomposition Methods. 

 

Introduction 
 

To solve optimally the problems in science engineering, many works 

have been proposed to study the stability for the nonlinear system [1]. 
Diff erent strong scheme have been established to solve the nonlinear 

problems as, Adomian Decomposition Method (ADM) [2-8], Laplace 

transform combined with Padé approximation [9-14], Padé Sumudu 
Adomian Decomposition Method (PSADM) [15] homotopy 

perturbation method [16,17] Modified decomposition method [18-20] 

have been obtained to approximate the analytical solutions. In the 
present paper, we analyze the behaviour of the Padé Sumudu Adomian 

Decomposition Methods solution (PSADM) [15] in the case of 

nonlinear Schrödinger equations [21] and KdV-Burgers Equations 
[22]. It can be seen in many literatures that the Sumudu Adomian 

Decomposition Methods (SADM) and Laplace Adomian 

Decomposition Methods (LADM) give similar results, the Sumudu 
transform present some advantage in calculation because have unit 

preserving properties (S[1] = 1). The Padé approximations have been 

used to control the convergence of the series solution. The function 
P[L/M][.], called double Padé approximation [15] can also be use for 

Laplace Adomian decomposition method, and obtain the new solution. 
In this paper we analyze the behaviour of the Padé Sumudu Adomian 

Decomposition Methods Solution and provided some criteriums for the 

choice of the best PSADMs. 
 

Padé Approximation 
 

The [L,M]-order Padé approximation of the function f denote by Px
[L,M]  

[f], is the quotient of two polynomials RL(x) and QM(x) of degrees L and 

M, respectively: 
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Remark 1: The [L,M]-order Padé approximation of the function f(x) is 
in the form: 
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Definition 1: Let f be function of two variables x and t. We defined two 

dimensional Padé approximation P[L/M] [f](x, t) of the function f as 
 

 P[L/M] [f] (x,t) = Px
[L,M] [Pt

[L,M] [f] ] (x,t),    (2) 

 
where Pt

[L,M] [f] (x, t) denote the [L,M]-order Padé approximation of f(x, 

t) with respect to the variable t, and Px[L,M] [f] (x, t) denote the [L,M]-

order Padé approximation of f(x, t) with respect to the variable x. 
 

If M=L, we will denote the diagonal Padé approximation of order M 

by P[M/M] [f] (x, t), and called [M,M]-order Padé approximation or M 
Padé approximation of f(x, t). 
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PSADM Procedure [15] 
 

By replacing the Sumudu transform by Laplce transform and using the 

same procedure we will obtain the Laplace Adomian Decomposition 
Methods instead of Sumudu Adomian decomposition method. 

 

We consider the PDE in the form as following: 
 Ltu(x,t)+Lxu(x,t)+R(u(x,t))+G(u(x,t))=F(x,t)  (3) 

with u(x,0)=h(x) the initial condition, Lx the highest order differential 

respect to x, Lt the fi rst order differential respect to t, G(u(x,y)) is the 
nonlinear term, F(x,t) is the inhomogeneous term, and R the remaining 

linear terms of lower order derivative. 

 
The procedure of PSADM for solving (3) can be write as follows. 

 

Step 1: Take the Sumudu transform to the equation (3) and apply the 
differentiation property of Sumudu transform to obtain 

 

St[u(x,t)](v)=h(x)+v.St[-Lxu(x,t)-R(u(x,t))-G(u(x,t))+F(x,t)](v). (4) 
 

Step 2: Apply the inverse of the Sumudu transform to the above 

equation to obtain 
 

u(x,t)=Sv
-1[h(x)](t)+Sv

-1[v.St[-Lxu(x,t)-R(u(x,t))-G(u(x,t))+F(x,t)](v)](t).. 

      (5) 
Step 3: Use Adomian decomposition method to decomposite the 

nonlinear function G(u) and the u, respectively, as 

0

( ) n

n

G u A
¤

=

=ä  

And 

0

( , ) ( , ).n

n

u x t u x t
¤

=

=ä  

Step 4: Write the equation in the form 
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which lead to the SADM recursive relations: 

u0(x,t)=Sv
-1 [h(x)](t) 

 

uk(x,t)=Sv
-1 [v[-Lxuk-1(x,t)-R(uk-1(x,t))+F(x,t)-Ak-1](v)](t). 

 

Step 5: Deduct the SADM approximation solution uSADM=u(x,t,j): 

  u(x,t,j)=u0+u1+…+ uj. 
 

Step 6: The [L,M]-order PSADM solution uPSADM=u(x,t,j,[L,M]) is 

given by 
 u(x,t,j, [L,M])=P[L/M]  [uSADM] (x,t), 

if L=M , we denote M-PSADM solution by 

 u(x,t,j,M)=P[M/M] [uSADM] (x,t). 
 

Remark 2: In step 5 we obtain the Sumudu Adomian Decomposition 

Method (SADM), instead of Sumudu transform we can use other 
integral transform like Laplace transform to obtain in step 5 the 

Laplace Adomian Decomposition Method (LADM). The Sumudu 

Adomian Decomposition Method and Laplace Adomian Decomposition 
Methods give similar result. The Sumudu transform due to the unit 

preserving properties (S(1)=1, provided some advantages in 

calculation. 
 

For different type of Padé approximation and different order of the 

Padé approximation we will analyse the behaviour of the PADM 
solutions. 

 

Example 1 

 

In the first case of the following example, we will show that for 

different type of Padé approximation: 

u(x, t, j, [L,M]) , for L > M, 
u(x, t, j, [L,M]), for L = M, and 

u(x, t, j, [L,M]), for L < M, we have different solutions and one of them 
is more accurate. 

 

In the second case of the following example, we will show that for 
diagonal Padé approximation u(x,t,j, [L,M]), for L = M, we can 

increase the accuracy of the method by increasing or reducing de value 

of M accordingly to the topologie of the solution. 
 

Case 1: Consider the equation: 

22 | | 0
u

i u u u
t

µ
+ + =

µ
                   (7) 

   
( )    ,  0   ixU x e=                               (8) 

We can easily deduice the SADM solution [15]: 
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The algorithm is coded by the symbolic computation software 

Mathematica. We know u(x,t) = ei(x+t) is the exact solution for the 
Problem. 

Figure (1a) and Figure (1b) show the real part and imaginary part of 

SADM solution uSADM = u(x,t,15) in Domain D = [0,2] × [0,2]. 
For different values of L and M we plot different orders of the PSADM 

solutions to see the behaviour of the methods. 

Figure (1c) and Figure (1d) show respectively, the real part and 
imaginary part of PSADM solution uPSADM = u(x,t,15,[7,0]) in Domain 

D = [0,2] × [0,2]. 
Figure (1e) and Figure (1f) show respectively, the real part and 

imaginary part of PSADM solution uPSADM = u(x,t,15,[1,7]) in Domain 

D = [0,2] × [0,2]. 
Figure (2a) and Figure (2b) show respectively, the real part and 

imaginary part of PSADM solution uPSADM = u(x,t,15,[7,1]) in Domain 

D = [0,2] × [0,2]. 
Figure (2c) and Figure (2d) show respectively, the real part and 

imaginary part of PSADM solution uPSADM = u(x,t,15,[7,7]) or in short 

u(x,t,15,7) in Domain D = [0,2] × [0,2]. 
Figure (2e) and Figure (2f) show the real part and imaginary part of 

the exact solution u(x,t) in Domain D = [0,2] × [0,2]. 

 

 
Figure 1: SADM and PSADM solutions using 15 terms. 
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Figure 2: (a)-(d) PSADM solutions using 15 terms, (e) and (f) exact 

solutions. 

 
In domain D = [0, 2] × [0, 2] we can see that the u(x, t, 15, [1, 7]) and 

u(x, t, 15, [7, 1]) are not smooth compare to the other solutions. Next 

we plots the absolute errors. 
Figure (3a) and Figure (3b) show respectively the absolute error for 

real part and imaginary part of the Sumudu Adomian Decomposition 

solution u(x, t, 15). 
Figure (3c) and Figure (3d) show respectively the absolute error for 

real part and imaginary part of the Padé Sumudu Adomian 

Decomposition solution u(x, t, 15, [7, 0]). 
Figure (3e) and Figure (3f) show respectively the absolute error for 

real part and imaginary part of the Sumudu Adomian Decomposition 

solution u(x, t, 15). 
Now let see the behaviour of the SADM, PSADM solutions in domain 

D = [0, 10] × [0, 10]. 

 
Figure (4a) and Figure (4b) show the real part and imaginary part of 

SADM solution uSADM = u(x, t, 15) in Domain D = [0, 10] × [0, 10]. 

Figure (4c) and Figure (4d) show respectively, the real part and 
imaginary part of PSADM solution uPSADM = u(x, t, 15, [7, 0]) in 

Domain D = [0, 10] × [0, 10]. 

Figure (4e) and Figure (4f) show respectively, the real part and 
imaginary part of PSADM solution uPSADM = u(x, t, 15, [1, 7]) in 

Domain D = [0, 10] × [0, 10]. 

Figure (5a) and Figure (5b) show respectively, the real part and 
imaginary part of PSADM solution uPSADM = u(x, t, 15, [7, 1]) in 

Domain D = [0, 10] × [0, 10]. 

Figure (5c) and Figure (5d) show respectively, the real part and 
imaginary part of PSADM solution uPSADM = u(x, t, 15, [7, 7]) or in 

short u(x, t, 15, 7) in Domain D = [0, 10] × [0, 10]. 

Figure (5e) and Figure (5f) show the real part and imaginary part of 
the exact solution u(x, t) in Domain D = [0, 10] × [0, 10]. 

 

 
Figure 3: Absolute errors. 

 

 
Figure 4: SADM and PSADM solutions using 15 terms. 

 

http://edelweisspublications.com/journals/44/Edelweiss-Applied-Science-and-Technology-(ISSN:-2576-8484)
http://edelweisspublications.com/index.php
http://edelweisspublications.com/index.php
http://edelweisspublications.com/index.php
http://edelweisspublications.com/index.php


Richard M, et al. Edelweiss Applied Science and Technology, 2021 PDF: 193, 5:1 
 
 

Citation: Richard M and Zhao W. Behaviour analysis of the padé sumudu adomian decomposition method solution 
(2021) Edelweiss Appli Sci Tech 5: 39-45. 

  42 
 

 
Figure 5: (a)-(d) PSADM solutions using 15 terms, (e) and (f) exact 

solutions. 

 
We can see in this example, in domain D = [0, 2] × [0, 2] the SADM 

behave well, but in domain D = [0, 10] × [0, 10] the SADM give bad 

result. Only the u(x, t, 15, 7) approaching well the exact solution in the 
domain D = [0, 2] × [0, 2] and D = [0, 10] × [0, 10]. Even in domain 

D = [0, 2] × [0, 2] the graph of absolute error show the [7, 7]-order 

PSADM (in short 7-PASDM) solution is better than SADM solution 
and other type of PSADM solutions. The solution can be perfom by 

choosing different value of M. 

 

Remark 3  
The real part and imaginary part of the exact solution are bounded, 

and the real part and imaginary part of the SADMs are not bounded, in 
this case in better to use diagonal Padé approximatin to make bounded 

the Approximate solution. 

 
Case 2: Consider the equation: 

26 | | 0
u

i u u u
t

µ
+ + =

µ
   (11) 

3( , ) i xu x o e=
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We can easily deduce the SADM solution [15]: 
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And the [L,M] order PSADM solution: 
 

uPSADM = u(x, t, j, [L,M]) = P[L/M]  [u(x, t, j)] (x, t),             (14) 

 
The algorithm is coded by the symbolic computation software 

Mathematica. 

We know u(x, t) = e3i(x-t) is the exact solution of the Problem. 
Figure (6c) and Figure (6d) show respectively the absolute error for 

real part and imaginary part of the PSADM solution u(x, t, 20, 7). 

Figure (6e) and Figure (6f) show respectively the absolute error for 
real part and imaginary part of the PSADM solution u(x, t, 20, 8). 

Figure (6a) and Figure (6b) show respectively the absolute error for 
real part and imaginary part of the SADM solution u(x, t, 20). 

 

 
Figure 6: Absolute error. 

The graph of the absolute errors show that the SADM solution give 

better approximation than 7-order PSADM solution, and the 8-order 

PSADM solution give better approximation than SADM solution. The 

solution can be perform by choosing different value of M. 
 

Example 2 
Case 1: Consider the equation: 
 

2

u 0,

( , ) 2sec ( ),

, ,

t x xxxu u u

u x o x

x t +

- + =ë
î

=-ì
îÍ Íí

    (15) 

 

Using the SADMs, we can deduice: 
1[ ( , )]( ),o vu s u x o t-=     (16) 

3
1

1 3
[ [ 6 ]( )]( ),v t o Ou s vS u A v t

x

- µ
= - +

µ  

  (17) 

     (18) 
3

1

1 13
[ [ 6 ]( )]( )n v t n nu s vS u A v t

x

-

- -

µ
= - +

µ
   (19) 

 
The solution is given by: 

 

1 2 3 4
( , ) ...ou x t u u u u u= + + + + + (20) 

 

The Sumudu Adomian Decomposition solution is given by 
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1 2 3 4( , , ) ...o ju x t j u u u u u u= + + + + + +
          

(21) 

Then the [M,N]-oder Padé Sumudu Adomian Decomposition solution 

is given by 

[ , ]( , , ,[ , ]) ( ).M Nu x t j M N P uSADM=                         (22) 

By using the symbolic computation software Mathematica. 
The figure (7a), Figure (7b), Figure (7c) and Figure (7d) show 

respectively the curve of SADM solution u(x, t, 3), PSADM solution 

uPSADM = u(x, t, 3, [2,2]), uPSADM = u(x, t, 3, [1, 2]) and the exact solution 
u = u(x, t), in domain D = [-0.5, 0.5] × [0, 0.1]. The exact solution is 

given by u(x, t) = -2sech2(x-4t) 

 

 
Figure 7: (a) SADM solution, (b) and (c) PSADM solutions using 3 

terms, (d) exact solutions. 

 
Figure (8a), Figure (8b), Figure (8c) and Figure (8d) show 

respectively the curve of SADM solution u(x, t, 3), PSADM solution 

uPSADM = u(x, t, 3, [1, 2]) and the exact solution u = u(x, t), in domain D 
= [-1, 1] × [0, 1] 

 
Figure 8: (a) SADM solution, (b) and (c) PSADM solutions using 3 

terms, (d) exact solutions. 
 

We can see the SADM, [2, 2]- order PSADM and [1, 2]-order PSADM 

solutions behave well in domain D = [-0.5, 0.5] × [0, 0.1], but only [1, 
2]-order PSADM solution give better result in domain D = [-1, 1] × [0, 

1]. The [2, 2]-order PSADM solution in this case in not better than [1, 
2]-order PSADM solution. Then the diagonal Padé approximation are 

not accurate in this case. It is recommended in case to use [M,N]-order 
Padé approximation with M ≠ N. 

 
Case 2: Consider the equation: 

2 0,

( , ) ( ),

, ,

t x xxxu qu u u

u x o h x

x t

b

+ +

ë + - =
î

=ì
îÍ Íí

    (23) 

We know for q = 6, β = -1, and subject to the initial condition 

2

2
( , )

1

kx

kx

ke
u x o

e
=
+

 

the exact solution is given by: 

2( , ) sec [ ( )]u x t k h k x k t= -  

For k = 0,5, the figure (9a), Figure (9b), Figure (9c), Figure (9d), and 
Figure (9e) show respectively the curve of the SADM solution uSADM 

= u(x, t, 4), PSADM solutions u(x, t, 4, 2), u(x, t, 4, [0, 2]), u(x, t, 4, [2, 
0]) and the exact solution uexact in domain D = [0,1] × [0, 2] 

 
Figure 9: (a) SADM solution, (b) and (d) PSADM solutions using 4 

terms, (e) exact solutions. 

 
For k = 0.5, the figures (10a), (10b), (10c), and (10d) show 

respectively the absolute error curve for the SADM solution uSADM = 

u(x,t,4), PSADM solutions u(x,t,4,2), u(x,t,4,[0,2]), and u(x,t,4,[2,0]) in 
domain D = [0,1] × [0,2] 

 

The SADM and [2, 2]-order PSADM (or in short 2-PSADM) provide 
same results. The [0, 2]-order PSADM solution in this case providing 

better error than [2, 2]-order PSADM and [2, 0]-order PSADM 

solutions. The diagonal Padé approximations are not recommended in 
this case. 

 

Remark 4 
The following conditions can help to choose the best PSADM solution. 

Condition (*) 
If  

exactlim u  = 0,
x¤
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Figure 10: Absolute errors. 

 
We comput the new solution by 

 

 u(x, t, j, [L,M]) = P[L/M]  [uSADM] (x, t),with L < M 
 

Then  

lim u(x,t, j, [L, M]) = 0,
x¤

 

Condition (**) 
 

If  

exactlim u  = ,
x¤

¤  

We comput the new solution by 

 

 u(x, t, j, [L,M]) = P[L/M]  [uSADM] (x, t),with L >M 
 

then 

lim u(x,t, j, [L, M]) = ,
x¤

¤  

 

Condition (***) 
If we are not in the case mentioning in conditions (*) and (**), we 
comput the new solution by 

 

u(x, t, j, [M,M]) = u(x, t, j, M) = P[M/M] [uSADM] (x, t),with L = M 
 

Conclusion 
 

In this work, we show the behaviour et of the function P[L/M] [.](x, t) 

using to obtain the Padé Sumudu Adomian Decomposition Methods 

solution for nonlinear partial differential equations such as the 
Schrödinger equations, and the KdV-Burger's equations. The proposed 

function provide us a suitable way for controlling the convergences of 

series solutions with high accuracy by using different order of Padé 
approximation and different type of the Padé approximation according 

to the topology of the exact solution u(x, t) and the topology of the 

SADM solution u(x, t, j). When the exact solutions are unknown, we 
have some mathematical approach to obtain more information about 

the topology of the exact solution. This approach can be generalized to 

investigate more complicated nonlinear partial differential equations 
that can only be solved by numerically. 
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