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Abstract

A newdi-block acrylate copolymer with a Coppehthalocyanine (CuPc) core has been synthesized via astegitieaction scheme involvin
the atortransfer radical polymerizatioThis material displayed amphiphilic character and consists of a CuPc coreghitic@polymer arms
This new amphiphilic material and related intermediates have been characterized-\g, UN-IR, *H-NMR and elemental analysig
preliminary study involving seldssembly properties of this material by optical, atomic force and scpeleictron microscopies is presented.

Keywords: CopperphthalocyanineAmphiphilic materialsAtom-transfer radical ggmerization,AggregatesSelf-assembled properties

Abbreviations: CuPeCopperPhthalocyaningPorPorphyrins Pc-Phthalocyan

inesDMF-Dimethylformamide DCM-DichloromethangFT-IR-

FourierTransform InfraredSpectroscopyTLC-Thin Layer ChromatographiBA-tert-Butyl Acrylate, TEGA-Tri(ethylene glycol) monomethyl

ether

Introduction

In the past decade, the synthesis of functional faanbitectures,
aimed at developing electronic and photonic ndedices to perform
specific functions, such as catalysis, chemical sensing, electrical
conductivity, photodynamic therapy, etc., has beerintense area of
research [110]. Most of these activities are driven by the sedsembly

and seHorganization properties of molecules and require the
incorporation of functional building blocks through a wafined
controlled process. Porphyrins  (Por), tetraazaporphyrins,
Phthalocyanines (Pc) and porphyrazines are examples of tetrapyrrole
macrocyclic ring systems, through which mutual +comalent
recognition of specific structural properties, can-asemble and act

as building blocks for selfrganizd architectures.

Phthalocyanines possess an extended flat hydrophobic aromatic surface
and the disshaped rigid Pc rings can easily stack through strong
intermolecular arenra r e n-'e) (i’ rohse leadingtto aggregation
[11-13]. Other molecular recagtion motifs that can setiggregate are
metatligand and doneacceptor interetions and hydrogen bonding
[14-16]. Various approaches have been explored in order to control the
selforganization of Pc molecules to form wdkfined nanebjects.

One suchapproach is the incorporation of these molesuin
amphiphilic polymers [120].

Pcs have been incorporated in such systems as a side group, as a
terminal group, in the main cha@nd in a polymeric network [226].

Kimura et al studied the sedfssemly properties of ZnP¢erminated

Butyl Acrylate (BA) and Tri(Ethylene Glycol)Methyl Ether Acrylate
(TEGA) polymers and have reported formation of nanofibers through
self-organization [18]This group also studied the aggregation

behavior of the amphiphilic block copolymer of poly(norbornene)s
containing Pc moieties as a side chain of the polymer backbone that
formed spherical micelles in an alkaline aqueous solution [t9].
addition, ordered stacked Pc polymers were prepared in whidRcthe
moieties were contained in the polymer network and in the main chain
of the Pc polymers with reported ridle nanostructures [20Bimilar
polymer systems have also be@veloped using Por moieties [3D].

In most cases, the polymerization step Hamen achieved by
controlled/living radical polymerization, such as metathesis
polymerization andAtom Transfer Rdical Polymerization (ATRP)
[18-20, 2730].

Pcs have mostly been incorporated in amphiphilic polymers as a side
group, a terminal group, omithe mén chain [3134]. Although
polymer amphiphiles with Por cores have been designed and reported,
amphiphilicpolymersespecially block copolymers with Rores;have

not been studied well due to synthetic challenyés.report here the
synthesis anatharacterization of a new-Block acrylate copolymer

with CuPc core, having a distinct hydrophobic segment composed of
tert-Butyl Acrylate (tBA) units, and a hydrophilic segment having
Tri(Ethylene Glycol)Monomethyl Ether Acryla@ EGA) units.

Experimental

Materials and Methods

Unless mentioned otherwise, all reagents were used as received from
commercial suppliers without further purificatidbimethylformamide
(DMF) used in these reactions was purchased as anhydrous grade
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stored in a SurSeaf bottle. Toluene was dried by distillation over
freshly cut sodium metal cube&ll reactions involving moisturand
air-sensitive reagents were carried out under an inert atmosphere using
high-purity grade argon that was first passed through a column of
anhydrous calcium sulfateThin Layer Chromatograph{TLC) was
done on 60, 200 em thick silica
aluminum oxide flexible platesGravity-flow column chromatography

was performed on 7230-mesh, 60A silica gel or 15Mesh, 584
activated neutral aluminum oxide.

Structural characterization ByourierTransform Infraredspectroscopy
(FT-IR) was carried out using a Thermo Nicolet Nexus 470IFFT
spectrometer and a Perkiiimer System 2000 instrumeniThe
electronic absorption speatrwere recorded on a Perkin Elmer
(UVIVIS/NIR) spectrometer Lambdi9. *H-NMR and “C-NMR
spectra were recorded by a 300 MHz Bruker instrumglgmental
analyses were performed on a PeiEimer Series I CHNS/O
Analyzer 2400 machineScanning ElectrorMicroscopy (SEM) was
performed by a JEOL JSM59Q0/ instrument andAtomic Force
Microscopy(AFM) by Picoscan 3000 AFM (Agilent Technology).

Synthesis of the Phthalocyanine Precursor, 253
Dicyano-1,4-bis {2-2-[(2- hydroxyethoxy)-ethoxy]-
ethoxy}benzene (1)

2,3dicyanel,4-hydroquinone (11.3958 g, 71.1659 mmol) in 100 mL
anhydrous DMF was added to a stirred suspensionn@0K(29.5075

g, 213.5 mmol) and Kl (2.9834 g, 18 mmol) in 150 mL anhydrous
DMF under inert atmosphere in a 500 mL 3 neck round bottork. flas
A solution of 2[2-(2-chloroethoxy)ethoxy]ethanol (30 g, 170.7982
mmol) in 10 mL anhydrous DMF was added tdTtte reaction mixture
was stirred at 7A€ for 10 dayslt was then cooled to room temperature
and filtered under vacuunilhe filtrate was powed into a Teflon
petridish and DMF was allowed to evaporatéhen it was dry, it was
kept in the oven at 3G under vacuum for 2 hour$he brown solid
was stirred with water and extracted with chloroforfine organic
layer was collected, dried oveanhydrous MgS@ filtered and
chloroform was evaporated in a rotary evaporator to give orange
colored solid The solid was purified by column chromatography, using
alumina column, eluting with first witfDichloromethane(DCM),
followed by 5% methanol in DI@. Evaporation of the solvent yielded
compound 1 as white solid Yield: 70%.

FT- R ( K B341D,:2908, 2876, 2227, 1493, 1352, 1285, 1195,
1102, 1065, 925, 820, 738, 523, 469 cmMH NMR (300 MHz,
DMSOdsi=2.5): t0=7.62 (m, 2H), 4HF4
3.77 (t,-34182, (Is3-35H94 Um3.46H), U
Ui 3.393.42 (m, 4H).

Synthesis of Copper Phthalocyanine (CuPc) (2)

1 (2.682 g, 6.32 mmol) and copper powder (0.8 g, 12.59 mmol) were
taken in a 10 mL round bottom flask ahéated for 5 hours at 170
under argon.The color of the reaction mixture turned gredine
reaction mixture was cooled to room temperature and 10 mL of
methanol was added to it. was stirred overnight and filtered under
vacuum.Methanol was evaporated a rotary evaporator to give green
solid. It was purified by column chromatography using alumifiae
solvent systems used were DCM, followed b§9 methanol in DCM.

TLC showed that the product is still not puo the fractions that
eluted with 25% methanol in DCM, were combined and subjected to
another column chromatography, with a solvent system of DCM, again
followed by 25% methanol in DCMThe fractions obtained with the
last eluent system were checked with TLC and were found to be pure.
Solventwas evaporated to give pure CuPc (2) as a sticky green solid.
Yield: 2.2 g, 20%. Anal. Calcd. forggH1248CuNsO3, (%): C, 55.1; H,

6.9; N, 6.2. Found (%): C,54.9;H,6.8;N,653-l R ( KBr ) : 3
2901, 2874, 1601, 1505, 1460, 1317, 1268, 1213, 10063, 924,
890, 808 cnt; 1H NMR (300 MHz, DMSQds i = 2. 5) : ua =

51 t
IR

= 4.25 (t,
743 662, 325, 269 nm.

8H), 8 FB)8 (m, 8OH)=UVGis 91 ( t
( DMS Q=

Synthesis of ATRP macroinitiator (3)

Cdinpdund 3 (0.5 & b.27d5 enmobhd dsboRed in 8 ALDyridng P a € M
25 mL round bottom flask in presence of arg@rBromoisobutyryl
bromide (7 g, large excess) was dissolved in 5 mL chloroform and
added drop wise to a vigorously stirred solution of 11°@t 6ver a
period of 1 hour undeinert atmosphereThe temperature gradually
rose to room temperature and the reaction was allowed to proceed for
24 hours.Chloroform was evaporated in a rotary evaporaidre
reaction mixture was then added drop wise to a large excess of water
when gren solid separated out.was washed thoroughly with hexane

in order to remove unreactedbPomoisobutyryl bromidelt was then
extracted with chloroform and the organic layer was washed
thoroughly with water, a saturated solution of0Q; and a saturated
solution of NaCl, twice each.

The organic layer was collected, dried over anhydrous Mg&ad
chloroform was evaporatedhe green solid was purified by column
chromatography using alumina column and chloroform as the eluent.
Evaporation of chlorofornn a rotary evaporator yielded 12 as a dark

green sticky solid. Yield: 0.3 g, 40%. Anal. Calcd. for
C118H168BrsCuNsOyo (%): C, 46; H, 5.5; N, 3.7. Found (%): C, 45.01;
H,54;N,36FT-Il R ( KBr ) : 3 = 2872, 1732,
1371, 1272, 12111167, 1107, 1073, 928, 875, 756 tnH-NMR

(300 MHz, DMSOdgi = 2. 5)7.. 60 (=m,7 .8&4H) , 0 = 4.
=333.76 (m, 8O0H), miF742 684, 326G244rem, 48 H)

Synthesis of the homopolymer, CuRcore-poly-(tBA) (4a)

The macroinitiator 3 (0.11 g, 0.0367 mmol) was dissolved in dry
toluene for 30 minutes under argon atmosphBreN, N', N', N*
Pentamethyldiethylenetriamin®MDETA) (0.063 mL, 0.301 mmol),
the monomer-BA (5 times the weight of the monomer) and Cu(l)Br
(0.0432 g, 0.301 mmol) were added sequentidllyree freezpump
thaw cycles were performedhe reaction mixture was then heated
under vacuum at 9C for 4 hours under argon atmosphereluene
was evaporated:he mixture was washed several times with hexane
remove unreacted PMDETA and the monomn#dter each washing, it
was centrifuged and hexane was decanfBue green solid was
dissolved in chloroform and filtere@he residue is unreacted Cu(l)Br.
The filtrate was collected and chloroform evaporatedjit@ green
solid.

1H), §‘ =4, 2? (1
l§ &92)3_1,1;%7 , 4732, 1496, 1463, 1388, 1371, 1276,
1168, . 1069, 957, 874, 814, 762, 701, 61%;cH-NMR (300
MHz, CDCkU =7 . 2622 (1 W 6 H)-3. T =@m,62.28(rH) , -
CH of t he pol y m®r(r, 6H ofk theo polyrmer u=
b ackboh48)(hr, (AQHBC of the BA ester group); UWis
( D C Mpac741-663, 325, 231 nm.

Synthesis of the block copolymer, CuRcore- poly-
(tBA) -co-poly-(TEGA) (4b)

4b was made following the same procedure as the synthedis lof

this case, 4a itself was used as the macroinitiator for the polymerization
reaction.

'H-NMR (300 MHz, CDC}ti =7 . 26) : U = 74.36t, 16Hn,
CHOCO) 3.5375 (m, OCH) , 3.3B%s, CH of the TEGacrylate

gr ou )25 (Br=m,protons inp ol y mer b alalk sone) ,
(CH3)3C of the BA ester group); UW i s ( DyeaV137,292eam.

8 H)

Synthesis of TEGA monomer (5)
Tri(ethylene glycol) monomethyl ether (1.5 g, 9.1352 mmol) was

=dissdI¥el ih 5 mL anhydrous THRcryloyl chloride (1.5 g, 16.5727

mmol) and triethyl amine (3.18 mL, 22.838 mmol) were added to it.
ThRe rdactignmixture was stirred under argon atmosphere overnight at
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room temperaturelt was then poured into water and extracted with
chloroform. The organic layer was washed several simeith a
saturated solution of N@O; and a saturated solution of NaCl.

It was dried over anhydrous Mg%Cfiltered and chloroform was
evaporated from the filtrate to yield the TEGA monomer (5) as
colorless liquid.5 were purified by column chromatography using
alumina. 2% methanol in chloroform was used to elute the pure
fraction.

FT-IR (KBr): 2872, 1722, 1631, 1455, 1411, 1269, 1195, 1113, 987,

853, 806 crit, 'H-NMR (300 MHz, CDCI 3 U=7.
i61(dd,1H), G=5.79 (dd, 34687mi0H4. 25
i = 3.33 (s, 3H).

Results and Discussion

Retro-synthetic Analysis

The two key components of the reBgnthetic design for this project
are (i) an appropriate core molecule functionalized witliator groups
and (ii) polymerization to form the arm$herefore, in order to make
CuPc core functionalized polymer arms (4a and 4b), a CuPc derivative
containing eight bromoisobutyryl initiator moieties (3) must be
synthesized firstThis macreinitiator could be made from a CuPc
centered tri(ethyleneoxy) intermediate (2), a CuPc derivative with
peripherally substituted hydroxyl@H) functional groupsThat leaves

2 was to be constructed by cydktramerization of a phthalonitrile
precursor J).

Synthesis and Characterization

Phthalonitriles are the most commonly used precursors for the
synthesis of phthalocyanine derivativésdisubstituted phthalonitrile
derivative (1) was synthesized as the precursor of 2 by-alky@ation
reaction in which 2 &licyanohydroquinone was alkylated by treatment
with  2-[2-(2-chloroethoxy)ethoxylethanol in the presence of
anhydrous potassium carbonate and a catalytic amount of potassium
iodide Scheme ) The reaction was carried out in anhydrous DMF.
The same reactioconditions were followed as reported by Xue et al
[16]. After evaporation of DMF, the crude product was extracted with
chloroform and purified by column chromatography to afford pure 1 as
a white solid.

OH STV T T O O O OH

_x ci o o oH
=N K,COp | KI
OH

anhyd. DMF, 70°C, 10 days

Cu powder l 170°C, vacuum. Ar. Sh

we’ N N % lanWany
o OH

H/j/_\/_\ § ; OH

_ACALS SAAST

Scheme 1Synthesis of CuPc precursdj) @ndCuPc p).

The first attempt to synthesize CuPc was by refluxing 1 4in 2
(dimethylamino)ethanol in the presence of copper acetate under an
argon atmosphere, but no characteristic green color of Pc was obtained,
even after 3 daydNext, we tried to synthesize the CuPc via itgPki

[35]. After purification, the desired CuPc was obtained, but in very low

yield (12%).The next attempt was via the isoindoline route where 1
was first converted into its isoindolene by treating with ammaonthe
presence of sodium methoxide in methanol, followed by- self
condensation of the isoindolene into CuPc, in the presence of copper
acetate, but without succes&nother attempted route to 2 was by
reacting 1 with copper acetate in dry quinoline 26°€ for 3 hours,

but the characteristic green color of Pc was not obseRigdlly, we
succeeded in synthesizing 2 from 1 by a sohfeze method [36]The
phthalonitrile derivative was stirred with Cu powder at a very high
temperature [36]The optimumtemperature for our system was found

2 @o) be 171G 6ndeB Bacund fbr, 5 hbur§¢heme L Unreacted Cu

péwider wek Hiljered aff and pure Were obtained as a sticky green
solid after column chromatographylThe macroinitiator 3, with
bromoisobutyrylinitiating sites, was synthesized by acylation of the
peripheral hydroxyl groups in 1 with a large excess of 2
bromoisobutyryl bromideThe reaction was carried out in a mixture of
chloroform and pyridine and the temperature was allowed to rise from
0°C to room temperature and maintained there for 24 h&chgme

2). The crude product was extracted with chloroform and washed
thoroughly with saturated solutions Bbtassium Carbonai@,COs)

and Sodium Chloride(NaCl). Pure 3 was obtained as a bright green
solid after column chromatography.

/_\/_\/_\ TN
HO o o OH
N

f \} \ \ /! A\ A4 \y
10 » = o o o 0E

TN TN NN N
HO o]

OH
L/\_/\_/

Pyridine-CHCls,
0°C-RT.24h

Scheme 2Synthesis of CuPc macroinitiat)(

The polymerization reactions were performed under ATRP conditions
(Scheme3). Two monomers were chosen: (i) t&titylacrylate ({BA)

and (ii) Tri(ethylene glycoMonomethyl Ether Acrylate(TEGA).
While the polymer chain composed ofBA units imparts
hydrophobicity to the system, the one composed of TEGA monomers
provides hydrophilicity Accordingly, the CuPcore block copolymer
poly-(t-BA)-poly-(TEGA) will be amgiphilic in nature.The monomer
TEGA (5) was obtained from tri(ethylene glycol)monomethyl ether
and acryloyl chloride following the conditions previously reported for
the preparation of acrylated PEG derivatives [€&pper (I)Bromide
[Cu(DBr]  was used as catalyst and N,NL,N' NN
Pentamethyldiethylenetriamif®MDETA) as the ligandin a typical
polymerization procedure, the fore macroinitiator: CuBr: ligand
ratio was 1: 8.2: 8.2 and the amount of monomer added was 5 times the
weight of the initiator Polymerization reactions were carried out in
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solution with toluene as solvent under argon atmosphé&he
purification procedure was modified, by first extracting with
chloroform and then purified by column chromatography.

B>

m/_\/_\ /_\/_\m |
Br

wﬁiﬁMﬂQ&f?ﬁﬁﬁLew
SN o VaYel )\bﬁﬁﬁw
_WM>_L\_/UL/ 0 5

\_/\_/L/

4(ab) —w=a poly--BA
b: poly-(-BA)-poly-(TEGA)

Scheme 3Polymerization of-BA and TEGA.by ATRP.

The FFIR spectrum of the phthalonitrile precursd) 6howed strong
O-H stretching at 3410 cfnand aromatic @H stretch at 3092 cth
Bands at 2907 cthand 2876 cm are indicative of Cklasymmetric
and CH symmetric stretchingréquenciesThe strong peak at 2228
cmti's typical of CI N s tThe grasdnde ofg
both aromatic and aliphatic-8 vibrations proves that the-&lkylation
step was been successfilh e CI N p e akwasdompitaly 8
disappeaed in the spectrum of CuPc2)( indicating complete
cyclotetramerization of 1The strong peak at 3390 &nis due to GH
stretching.The aromatic €H stretching vibration is seen at 3080 tm
and the positions of symmetric and asymmetric aliphatiti C
stretching vibrations remain the same as those for compouindtiie
FTIR spectrum of the macroinitiator 3, successful acylation with 2
bromoisobutyryl bromide is evident from the disappearance of tHe O
and the formation of the ester linkage comes fromstneng ester
carbonyl peak at 1732 ¢inThe FFIR spectrum of the homopolymer,
4a, had characteristic peaks similar to those of 3, with the common
features being (i) absence ofHD (ii) presence of CHasymmetric and
CH, symmetric frequencies, and (iiiC=0 around 1730 ct
Formation of TEGA was also confirmed by #H from the aliphatic
CH, peaks around 2900 chand the ester carbonyl peak at 1722'cm

c

'H-NMR of the phthalonitrile precursdrin DMSO-ds shows chemical
shifts for the aromatic proten a% 62 %€ m) , for tahe
4.56(t), for the ArOCHp r ot o n428 as ta triplet and for all the
other CHO protonsa t 3.398.77 as multipletThe chemical shifts
for these protons remain almost the same in the CRRwith the
aromaticp r ot on7s. 4at QOH= p4.251A0QCH pretdns afi
0891and CHO pr ot 03r68.8.la the THNMR spectrum of
the macroinitiator 3t he presence
chemical shift of the protons in the €groups at the end of the side
chains, proves that thesterificationstep has been successful.

OH

The peaks for the ArOCGH r ot o n s 4.22 ars foathe CEDEO
pr ot on375. éBeside§ the aromatic protons and the Ar@CH
protons at 4.02sr@pedtiGely,ahetd NMR=spectrum of
the polyt-BA (4a) exhi bi t=2 foreGHkpsotom df thei
pol ymer b a &.%&fbrdhe EH of thetpolyiner backbone and
at 1.4B=£CH)sC protons of the-BA ester groupThe success of the
copolymerization reactions to synthesitteis conspicuous from it4

m

NMR spectralt shows peaks attributed the tertb u t vy | resonanc
1.44) as well as the to the OgH e s 0 n a%38,singlet)iThe 1H
NMR spectrum of TEGA monoer (5) shows three doublets of doublet
forthe t hree protons i6n 1t heeTd@mwithe at
OCHsr esonarmB8%® at U=

The UV-Vis spectroscopy of compounds42was performed in DCM.

All exhibit the characteristic Q band of Pc moleculestther study

was carried out with the homopolyméa) and the copolymerp) in

order to investigate their aggregation properties at low concentrations.
This was done by studying their Wis absorption behavior at
different concentrations and plotting thrgensity of their Gbands at
different concentrations against the sample concentration at selected
absorption wavelength (corresponding to the wavelength of the Q
bands). The linear relationship between concentration and absorbance,
as displayed irFigure 1 and Figure 2, strictly follows the Lambert

Beer Law, suggesting that neither of them form aggregates at low
concentrations.

015

Absorbance

Figure 1: Plot of UV-Vis Absorption Spectra of PolyBA (4a) at
Different Concentrations against Wavelength in D@het:Plot of
the Q Band Absorbance versus Concentration at 735 nm.

Absorbance st 740
nm
o e N oW

Absorbance

nm

1086, dwe toghen gl e f

Figure 2: Plot of UV-Vis Absorption Spectra of PelyBA-poly-
TEGA (4b) at Different Concentrations against Wavelength in DCM.
Inset: Plot of the Q Band Absorbance versus Concentration air735

The solubility properties of compounds4}), summarized iTable 1,
indicating that the copolymers are soluble in polar solvents.

Study of SelfAssembly Properties
A preliminary study was carried out to investigate the-astfembly
properties of the CuPmore block copolymer polt-BA)-poly-
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(TEGA) (4b), using optical microscopy, AFM an8EM. The

was paced on the substrate and the solvent was allowed to evaporate

copolymer was dissolved in methanol (10 mg per mLrop of it completely.
Compound | Diethyl ether | THF | Hexane | Acetone | Ethyl acetate | CH;CN | DCM | MeOH
1 -- -- -- -- + ++ ++ ++
2 -- -- -- -- + ++ ++
3 -- -- -- -- - + ++ ++
4 (a, b) -- ++ - + - T T T

Note: +: Soluble orwarming, ++: Highly Soluble;-: Insoluble

Table 1: Solubility Characteristics of Compountist.

Figures 35 show images from an optical microscope at 10x, 20x and
40x magnifications, on days 1, 3 and A.glass was used as the
substrateThe images of dayl and 3 show that the polymer is in the
process of selssemblingKigure 3 and Figure 4). By the day 7, this
process was complete and fibrous assemblies can be obseiyeac (

5).

hydrophobic substrate HOPG, whereas on hydrophilic substrates, e. g.,
silicon wafer and glass, fiorms fibrous assemblies.

Figure 7: AFM of 4b on Day 7 (Substrate: HOPG).
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