Case Report :
A
recent article had the provocative title: A wake-up call: we need phage therapy
now [1]. Indeed, there are very few sources for phages available if someone
needs them urgently. Thus phages are needed and should be produced,
characterized and banked and provided upon need, possibly on a European basis.
It is not so difficult to collect phages: wherever there are bacteria, there
are also their phages. Thus hospital sewage or general
sewage is rich sources, and then they require purification, characterization,
typing of their hosts, banking and catalogues. Looking
back into the history of phages will tell us some important information. A
curing activity was detected in the river Ganges as the basis for rituals by
Hindus, which was active against bacterial
cultures.
This activity was thermo-sensitive; it disappeared with heating of the river water, indicating some
biological activity [2]. This was due to phages - before they were known,
viruses of bacteria. Phages were applied to infectious epidemics since 1917
when Felix D`Herelle published his first paper against dysentery treated and
cured with phages in the Institute Pasteur in Paris [3]. Interestingly, he
isolated the phages from the stool of soldiers and used the filtrate on
bacteria- which were indeed killed. We isolated phages from the feces of a
human patient after feces transfer without knowing this history [4,5]. He
traveled wherever some infectious
diseases
occurred and treated them with phages, South America, Africa (Ruanda, Burundi,
Congo), passengers on a French ship in the Suez Canal, Mexico, Africa, India
(Assam), and Russia! Felix D`Herelle even swallowed the phages to prove that
they had no adverse effects [6]. He initiated the foundation of the Eliava
Institute of Bacteriophages, Microbiology and Virology in Tsiblisi in Georgia
in 1936. Phages are being produced there to this very day. Up to 1200 people
were employed there at peak times and produced tons of phages. The military was
a major recipient and driving force. Already in The
number of children coming down with dysentery was reduced from 6.7 per 1000 to
1.8, thus 3.8 fold. They continued to use phage therapy because of the lack of antibiotics. In Tsilbisi
also pills were designed and produced for easier transportation, up to 1.5 mio
pills per year. Also Band-Aids were developed to cover wounds. Even prophylactic
phage treatments were tested- however, that would require high bacterial doses,
frequent application of the phages to allow their replication: It did not turn
out useful unless during ongoing epidemics. Phages were even added to meals as
prophylaxis. The results achieved in the Soviet Union and Tsiblisi throughout
many decades will now have to undergo more stringent test conditions and
scientific reporting. It is not well-known, that large cohorts including
controls have been analyzed before, much beyond case reports, including
controls, exact conditions, etc. Three
recent case reports are mentioned below What
are needed are controlled clinical trials to prove and
specify the usefulness of a phage therapy against Multi Drug-Resistant (MDR)
bacteria. We need to find out, whether phages can help against MDR bacterial
infections
and whether people can recover from untreatable infections by phage therapy.
Pharmaceutical industry is not known to develop potential antibiotics, which
could enter the market soon. Some
recent success stories with phage therapies against MDR bacteria in
life-threatening diseases may be worth summarizing and evaluating. There is the
patient Tom Patterson with an open-access public YouTube story. He got infected
as a tourist in Egypt by a bacterium Acinetobacter
baumannii and had health problems with pancreatitis and diabetes. His
courageous wife S. Strathdee, an epidemiologist, activated doctors, agencies
and colleagues in the US and finally succeeded in finding help for her husband
by phage therapy. Out of 200 "natural" phages tested, finally three
were applied. They were pretested in special animal systems, a wax worm model,
whereby the wax worms are the caterpillars of the wax moth. One phage
originated from a company AmpliPhi Corporation and the two others from a
military-linked Center for Phage Technology (CPT) in Texas. An emergency
permission for an Investigational
New Drug
(eIND) from the Food and Drug Administration (FDA) allowed the application of
three selected phage types by three consecutive intravenous injections. A
local sore on her chest was pretested since no animal studies were performed.
She received 3 billion phages by intravenous injections every 12 hours for 32
weeks and phage therapy still continues up to now [9]. The third recent case
was published in a Belgium newspaper, the "Saint-Luc baby", a 13
months old baby with liver and blood infections by MDR bacteria. She received
phages for 85 days by a military doctor, Colonel Patrick Soentjens, from the
Military Neder-over-Heembeck Hospital near Brussels. The phages were described
as "trained" and "tailor-made" - whereby it is unclear,
whether they were selected for or gene-modified. The production of the phages
is worth mentioning because it was made by as "pharmaceutical
compound" [10]. This
is a routine production for crèmes or composite material directly prepared
under well-defended conditions in a pharmacy, but normally not for biological
such as phages. The Belgian Health authority, Sciensano, was involved. The
World Health Organization has declared six MDR bacterial strains as most urgent
targets for new therapies, described by the acronyme ESKAPE, indicating: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter. Furthermore,
the therapy consisted in all cases in a mixture of more than one phage and it
was even indicated, that they need to be compatible with each other. We know
since the early days of Human
Immunodeficiency Virus
(HIV) therapies that triple therapies are required targeting diverse molecular
mechanisms, to be successful to prevent resistance. Interestingly, some of the
recent trials involved former HIV specialists. Apparently in the
above-mentioned cases the infection was caused by one bacterium. This is not
always the case; e.g. large burns are infected by a variety of bacteria. Using
one phage against one target bacterium will not be successful as has been
described in a study designated as PhagoBurn, which was supported by the
European Union (EU) framework 7 [13]. If several MDR bacteria are involved, an
average of three phages per bacterium may be required. Furthermore
the initial treatments as described above were applied intravenously. This is
new and originally phages were preferentially envisaged for open wounds,
fractures and deep sores such gangrenes. Phage therapy has also been recently
described successfully for diabetic toes of 11 patients who were not in
life-danger but had to face amputations and were saved from surgery [14]. The
phages only last for short periods, so that treatments had to be applied twice
daily.The
doses were high and required sufficiently high bacterial titers to be
successful; otherwise the phages cannot multiply and die out. The numbers
described are 108 plaque-forming units (pfu/ml) for phages and
bacterial titers of 103 colony-forming units (cfu/ml). We
need new rules-and a new name The
requirements from legal European authorities such as EMEA for drugs refer to
non-biological, products which are exactly defined, producible by highly standardized
technologies and lots which are stored. Phages are biological and can vary if
large amounts are produced. In the cases mentioned above the phages were made
in small lots as needed. In the Belgium case the production was made by
pharmaceutical compound production, also named magisterial production. This was
intensely advertised by the Belgium scientists JP Prinay and colleagues from
the Queen Astrid Hospital in Brussels [15]. Yet
legal authorities do not normally allow such productions. The "GMP"
or "GMP-like” productions can fail with phages and their variability and
are prohibitively expensive, amounting to millions of €. This was the case with
the Pago Burn study supported by the EU [13]. Thus, we need many groups who
produce phages under identical conditions, purified and processed and then
typed for their bacterial specificity. Sooner or later there will be GMO phages
with broader host spectra. Such GMO-modified phages are presently not
acceptable by agencies in larger clinical trails, except for individual compassionate
trials, which normally do not have controls. Also
quite noticeable are the periods for therapies described above, the treatments
had to be continued for very long times, for many weeks. It can be hoped that
phages simultaneously applied with antibiotics prove faster success. Finally
trials for testing one target and one therapeutic - is the rule for drug
development. That is useless for phages, where more than one target and several
phages per target will be the rule. We need new regulations for phages to find
out, whether they will fulfill the high expectations: Four
legal "No-Nos" need to be overcome: · more than one
target, · multiple
treatments for one target, · no GMP but
pharmaceutical production (compounding), · Permission of GMO-phages.
Such
trials may need to be redefined by n a new name! Perhaps
other countries can proceed with less stringent regulations. The technologies
involved are simple and the phages are cheap. Felix D`Herelle produced phages
in Brasilia, Russia, India and Canada, not only in Paris and Africa-we should
remember that. Brasilia`s AIDS politics, even though breaking patent laws (not
safety rules), was successful recently, which reduced the number of AIDS
patients significantly. There are no patent laws for phages right now, thus the
regulatory restrictions need to be overcome. Who will be the next country to
try out this technology, if regulations delay the testing? 1. Moelling K, Broecker F and Willy C. A
Wake-Up Call: We Need Phage Therapy Now (2018) Viruses 10: 688. https://doi.org/10.3390/v10120688 2. Hankin EH. Laction bactericide des eaux de
la Jumna et du Gange sur le vibrion du cholera (in French) Ann Inst Pasteur (1896)
Bacteriophage 10: 511-523. https://doi.org/10.4161/bact.1.3.16736 3. d´Hèrelle, F. on an unvisible microbe
antagonist of dysenteric bacteria (1917) Comptes Rendues Acad Sci Paris 165:
373-375. https://doi.org/10.4161/bact.1.1.14941 4. Moelling K and Broecker F. Fecal Microbiota
Transplantation to Fight Clostridium
difficile Infections and other Intestinal Diseases (2016) Bacteriophage 6: e1251380.
https://doi.org/10.1080/21597081.2016.1251380 5. Broecker F, Klumpp J, Schuppler M, Russo G,
Biedermann L, et al. Long-term changes of bacterial and viral compositions in
the instestine of a recovered Clostridium
difficile patient after fecal microbiota transplantation (2016) Cold Spring
Harb Mol Case Stud 2: a000448. https://doi.org/10.1101/mcs.a000448 6. Hupfeld M, Trasanidou D, Ramazzini L,
Klumpp J, Loessner MJ, et al. functional type II-A CRISPR-Cas system from
Listeria enables efficient genome editing of large non-integrating (2018) Bacteriophage
Nucleic Acids Res 46: 6920-6933. https://doi.org/10.1093/nar/gky544 7. Haeusler T. A Solution to the Antibiotics
Crisis? (2006) Palgrave Macmillan, UK 298. 8. Schooley RT, Biswas B, Gill JJ,
Hernandez-Morales A, Lancaster J, et al. Development and Use of Personalized
Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a
Disseminated Resistant Acinetobacter baumannii Infection (2017). Antimicrob
Agents Chemother 61: e00954-17. https://doi.org/10.1128/aac.00954-17 9. Dedrick RM, Guerrero-Bustamante CA, Garlena
RA, Russell DA, Ford K, et al. Engineered bacteriophages for treatment of a
patient with a disseminated drug-resistant Mycobacterium abscessus (2019) Nat
Med 25: 730-733. https://doi.org/10.1038/s41591-019-0437-z 10. Hope A. Liver transplant baby saved by
"trained" virus at Saint-Luc hospital (2019) The Brussels Time, Belgium. 11. Kilcher
S, Studer P, Muessner C, Klumpp J and Loessner MJ. Cross-genus rebooting of
custom-made, synthetic bacteriophage genomes in L-form bacteria (2018) Proc
Natl Acad Sci 115: 567-572. https://doi.org/10.1073/pnas.1714658115 12. Kilcher S and Loessner MJ. Engineering
Bacteriophages as Versatile Biologics (2019) Trends Microbiol 27: 355-367. https://doi.org/10.1016/j.tim.2018.09.006 13. Jault P, Leclerc T, Jennes S, Pirnay JP, Que
YA, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat
burn wounds infected by Pseudomonas
aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2
trial (2019) Lancet Infect Dis 19: 35-45. https://doi.org/10.1016/s1473-3099(18)30482-1 14. Fish R, Kutter E, Wheat G, Blasdel B,
Kutateladze M, et al. Bacteriophage treatment of intransigent diabetic toe
ulcers: A case series (2016) J Wound Care 25: 273. https://doi.org/10.12968/jowc.2016.25.sup7.s27
15. Pirnay JP, Verbeken G, Ceyssens PJ,
Huys I, De Vos D, et al. The Magistral Phage (2018) Viruses 10: 64-69. https://doi.org/10.3390/v10020064 Karin
Moelling, Max Planck Institute of Molecular Genetics, Ihnestr 63-73, 14195
Berlin, Germany, Tel: 0049 172 3274306, Email: moelling@molgen.mpg.de Moelling K. New
case reports with phage therapy-what is needed for more? (2019) Nursing
and Health Care 4: 35-37. Anthrax, Placebo, Shigella bacteria, Multi drug-resistant
bacteria.New Case Reports with Phage Therapy-What is Needed for More?
Karin Moelling
Full-Text
Case Report
Promising
History
Three
recent case reports
They
immediately terminated a 3 months coma. Phage therapy was continued for up to 8
weeks and interestingly the phage effect increased when combined with
antibiotics. The patient recovered [8]. Then a 15 year old girl with Cystic
fibrosis received a lung transplant in England. A phage therapy was initiated
against her MDR bacterial infection, Mycobacterium abscessus, which had
destroyed her lung and still affected her skin and liver. (It is distinct form Mycobacterium tuberculosis, which is
unfortunately very difficult to treat with phages due to its encapsidation.)
She received three phage types specifically selected for her case, among them
two engineered, i.e. Gene-Modified Organisms (GMOs).
Conclusion from
the recent case reports
Phages
are not easily available and they need to be selected for to lyse the
respective bacteria. There is no central banking or a phage library with
pretested and readily available phages on demand for a therapy- which sometimes
requires a rapid availability in the case of sepsis patients, who may die
before phages can be selected and produced. Special phages may need to be
selected for or even gene-modified ones have to be made in the laboratory in
advance by recombinant technologies. Gene-modified
bacteria
have been recently described [11]. The new CRISPR/Cas9 gene editing technology
allows fast genetic engineering [12]. But GMOs cannot easily be used under the
rules of the European Medicines Agency (EMA). Time matters in urgent cases.References
*Corresponding author
Citation
Keywords